
At Home In Service Discovery
Vasughi Sundramoorthy





AT HOME IN SERVICE DISCOVERY

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op woensdag 20 september 2006 om 15.00 uur

door

Vasughi Sundramoorthy

geboren op 7 mei 1977
te Maleisie



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. P. H. Hartel



Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. Pieter Hartel University of Twente, promotor
Dr. Kevin Mills US National Institute of Standards and Tech-

nology (NIST), USA
Prof. dr. ir. Boudewijn Haverkort University of Twente
Prof. dr. ir. Mehmet Aksit University of Twente
Prof. dr. Wim Vree Delft University of Technology
Prof. dr. sc. Thomas Plagemann University of Oslo, Norway
Mr. Antonio Kung Trialog, France, referent

Cover: Abstract illustration of the three classes of devices, and the
communication protocol in FRODO. Uses the traditional “kerawang” motive,
typical to Malay wood carvings.

 

The work in this thesis has been carried out under the auspices of the Institute
for Programming Research and Algorithmics (IPA) research school and within
the context of the Centre for Telematics and Information Technology (CTIT).

IPA Dissertation Series No. 2006-17
CTIT address: P.O.Box 217, 7500 AE Enschede, The Netherlands
Series title: CTIT PhD. Thesis Series
ISSN number: 1381-3617
CTIT number: 06-93

Copyright © 2006 by V. Sundramoorthy
Printed by Wohrmann Print Service, Zwolle
Cover design by Kalai Kumar Poopalan @ Studio Werkz Concepts

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

isbn 90-365-2392-3

Author email: s.vasughi@gmail.com





To my parents and my husband





All the powers in the universe are already ours. It is we who have put our hands
before our eyes and cry that it is dark.

Swami Vivekananda





Abstract

Modern computer systems (since 1950s) evolved from being bulky, unreliable and
expensive, to being tiny, reliable, cheaper and faster. Improvements in size, ex-
pense and performance was due to the evolution in computer hardware; from
vacuum tubes, magnetic tapes, integrated circuits, to very large-scale integration
(VLSI) of thousands of transistors and other circuit elements onto a single chip.
The drop in cost and size led to the introduction of personal computers (PCs) for
use in office, schools, and homes. Together with developments such as network
technologies (LAN, WAN, WLAN, the Internet, etc), and application softwares,
computer systems are no longer just calculators, but multipurpose devices. We
use these devices for watching movies, making phone calls, sending emails, con-
trolling remote devices, driving, etc.

The next evolution of computer systems is referred to as pervasive computing.
In pervasive computing, computers (regardless of size) intelligently and autono-
mously work together, without human intervention. To achieve this goal, devices
will have to be able to automatically discover each other’s capabilities, or services.
Therefore, service discovery has emerged as a potential solution for achieving the
objectives of pervasive computing.

This thesis focuses on how to build an autonomous service discovery system
within the boundaries of the home. There are two major challenges that this
thesis addresses; the first challenge is how to build a reliable system, that is
robust against communication and device failures. A reliable system ensures
minimum human intervention, while increasing the chances of discovering the
available service. The second challenge is to build a lightweight service discovery
protocol that can be supported by devices with limited resources (low memory,
processing power, etc). This is because the home consists of a variety of devices,
with varying resource limitations. Devices from different manufacturers using
different technologies should also be supported.

Our contributions to the challenges above are as follows. We introduce a

i



ii ABSTRACT

Framework for Robust and Resource-aware Discovery (FRODO) for the home.
FRODO is a reliable and lightweight service discovery protocol that is also porta-
ble over a variety of devices. During the design, analysis (through model-checking
and simulations) and development of FRODO, we formulate the Service Disco-
very Principles, which are the fundamental properties of a small-scale service
discovery system. We also identify the failure recovery rules that facilitate the
service discovery system to satisfy these principles. As a result of our design
approach, FRODO is robust and suitable for the home environment which may
include resource lean devices. FRODO has equivalent or better performance than
its competitors.



Samenvatting

Sinds de 50-er jaren zijn computers gevolueerd van volumineus, onbetrouwbaar,
duur en langzaam naar klein, betrouwbaar, goedkoop en snel. Deze verbeteringen
zijn mogelijk gemaakt door de nog steeds toenemende integratie van componen-
ten, van radiobuizen tot complete computers op een chip. De introductie van de
personal computer en het grootschalige gebruik ervan, is het gevolg van deze ont-
wikkelingen. Computers worden, mede dankzij betere netwerktechnologien (LAN,
WAN, WLAN en Internet) en betere software, niet langer uitsluitend gezien als
rekenmachines. Ze worden voor meerdere doeleinden ingezet, zoals het verzenden
van email, het bekijken van films, of de besturing van apparatuur thuis.

De volgende stap in de evolutie van computers is ”pervasive computing”, waar-
bij computers alom tegenwoordig zijn en op een niet-opdringerige manier onders-
teuning bieden bij alledaagse taken. Netwerken van computers werken daarbij,
zonder direct menselijk ingrijpen, op intelligente en autonome wijze samen. Om
dit te bereiken is het noodzakelijk dat computers kunnen ontdekken welke andere
computers, en diensten die aangeboden worden, aanwezig zijn in zo’n ”pervasive”
netwerk. ”Service discovery”, het automatisch vinden van diensten in een net-
werk, is daarom een van de bouwstenen voor de verwezenlijking van pervasive
computing.

Het onderwerp van dit proefschrift is een service discovery systeem voor net-
werken thuis, waarbij twee grote uitdagingen worden aangepakt. De eerste uit-
daging is het maken van een robuust en betrouwbaar systeem, dat diensten kan
ontdekking terwijl er fouten kunnen optreden in communicatie en computers. De
tweede uitdaging is dit systeem zo klein mogelijk te maken, zodat ook appara-
tuur met beperkt vermogen (geheugen, rekenkracht, energie) ondersteund wordt.
Bovendien moet het mogelijk zijn apparatuur van verschillende fabrikanten met
verschillen netwerktechnologien te koppelen.

Het proefschrift adresseert de uitdagingen als volgt. Allereerst wordt een
service discovery raamwerk voor netwerken thuis (Framework for Robust and

iii



iv SAMENVATTING

Resource-aware Discovery: FRODO) gentroduceerd. FRODO is een robuust en
lichtgewicht protocol dat geschikt is voor een scala aan verschillende apparaten.
Daarna worden de service discovery principes geformuleerd die de fundamentele
eigenschappen beschrijven waaraan een service discovery systeem moet voldoen.
Opdat een service discovery systeem kan voldoen aan de principes zijn regels
gedentificeerd voor het herstellen van de juiste toestand als een fout is opgetre-
den. Door middel van het toepassen van formele methoden in het ontwikkelproces
wordt bewerkstelligd en aangetoond dat FRODO deze regels goed heeft gemple-
menteerd en voldoet aan de geformuleerde principes. Het resultaat is een robuust
service discovery systeem dat even goed, of beter, presteert dan vergelijkbare sys-
temen. FRODO is bovendien, in tegenstelling tot de concurrenten, geschikt voor
apparaten met beperkt vermogen.



Acknowledgements

If I have seen further, it is by standing on the shoulders of giants.
Isaac Newton

I take this opportunity to thank the wonderful people who gave me their time,
companionship, professional and personal help during my stay in the Netherlands
and during the growth of this thesis.

I would first of all like to thank my promotor, Pieter Hartel. Thanks to him,
I learnt not just how to do research, but to do “proper” research. He showed
me what it takes to write a publication, and taught me how to methodologi-
cally produce scientific results. His support for my personal well-being was also
immeasurable. Without him, this thesis wouldn’t have made it this far.

I thank my daily supervisor, Hans Scholten for our interesting discussions,
both on research ideas, and on more general topics. His support allowed me to
acquire the tools I required for my research, and travels to various workshops and
conferences. I also learnt much about the wonderful Dutch culture and people
from him.

Kevin Mills and Christopher Dabrowski from the US National Institute of
Standards and Technology (NIST) built the platform on which this thesis is stan-
ding. They showed me that service discovery is more than simply a set of libraries.
For the last 3 years, they patiently answered my emails, contributed to various
discussions and guided me through several experiments. I also thank them for
the opportunity to work in NIST as a Foreign Guest Researcher. The result of
the close contact I had with them produced the core of my thesis.

I extend a heartfelt appreciation to my promotion committee; Prof. Pieter
Hartel, Dr. Kevin Mills, Prof. Boudewijn Haverkort, Prof. Mehmet Aksit, Prof.
Wim Vree, Prof. Thomas Plagemann and Mr. Antonio Kung for reviewing and
commenting on this thesis. I appreciate and respect your esteemed knowledge,
dedication and commitment.

v



vi ACKNOWLEDGEMENTS

The time I spent in NIST allowed me to make the acquaintance of Ceryen
Tan from M.I.T. During the formal verification of FRODO, we practically talked
service discovery to death! His unique perspective to various issues was priceless.
Gerard van de Glind, my Master student helped shape the FRODO protocol to its
current state. Our online chat sessions during my stay in the US is still burning
the wires... Jerry den Hartog with his brilliant mind and good humor helped me
to abstract problems and solutions. Who needs a model checker, when we can
have Jerry on the team? Theo van Klaveren developed FRODO in C, for which
I am grateful. His efficiency and insight are invaluable.

My discussions with Sape Mullender, though brief, instilled important perspec-
tive into research directions in distributed systems. Pierre Jansen, Maria Lijding,
Nirvana Meratnia, Ferdy Hanssen, Hylke van Dijke, Angelika Mader, and Georgi
Koprinkov contributed to various discussions on several research questions. I also
thank Marlous and Nicole for their administrative support.

I consider myself lucky to be part of a fantastic group of international re-
searchers. Ricardo, Laura, Kavitha, Malohat, Jordan, Law, Supriyo, Stephan,
Nikolay, Anka, Illeana, Raluca, Mihai, Ozlem, Michel, Mohammad, Yuanching
and the list goes on and on. Please keep the party going!

I thank Kavitha and her husband Kiran for being such good friends. Kavitha,
I appreciate your silent sufferings as my sounding board for my various problems
in the last two years. To my other beloved confidant and parinimphen, Laura,
you are simply “ammmaaazing!”. Malohat and Mohabbat, your caring warmth
in the final stages of my thesis was priceless. Sheela, your vivaciousness helped
keep the loneliness away, for which I will always be grateful.

I thank Valerie Jones for her warmth and kindness when listening to my pro-
blems. I am also indebted to Anandhita for caring for me during the time I was
sick at a critical point of my work (amazing doctor!). I also appreciate Sandro for
insisting that I should stop working late nights! I extend a special“thank you”
to Marijke Smit. She introduced me to the colorful world of “buikdansen”. I
will always love her for her warmth, and friendship, along with her insight into
different cultures. You and Pieter will always have a home in Malaysia.

I would like to thank my Indian friends in Twente; Vijay Iyer, Pramod, Vis-
haka, Jay, Deepa, Vishy, Vishwas, Ambati, Rama, Ravi, Madhavi, Komal, Denni,
and the many others for their support and friendship.

My brother-in-law, Kalai Kumar beautifully designed an abstract illustration
of FRODO for the thesis cover, using a traditional Malay art.

Finally, I extend my deepest gratitude to my loving family. My parents have
always believed in me, while teaching me to look and think beyond the bounda-
ries. I thank my siblings; Vijaya, Preveen, Jegan, and Neesha, for their constant
support. The unwavering love and sacrifice of my best friend and husband, Siva
gave me the strength to start and finish my PhD.

Enschede, Vasughi Sundramoorthy
September, 2006



Contents

Abstract i

Samenvatting iii

Acknowledgements v

1 Introduction 1
1.1 The Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Focus: Autonomous Service Discovery . . . . . . . . . . . . 4
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Refereed Publications . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Technical Reports . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Taxonomy of Service Discovery 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Service Discovery: Third Generation Name Discovery . . . . . . . 12
2.3 Service Discovery Architecture . . . . . . . . . . . . . . . . . . . . 13
2.4 Service Discovery Functions . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Distributed Models Of Service Discovery . . . . . . . . . . . . . . . 18
2.6 Operational Aspects of Service Discovery . . . . . . . . . . . . . . 20
2.7 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 Small systems . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.2 Large systems . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Taxonomy of State of the Art . . . . . . . . . . . . . . . . . . . . 28
2.8.1 Taxonomy of State of the Art Solutions to Operational

Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



viii CONTENTS

2.8.2 Taxonomy of service discovery functions and methods . . . 33
2.9 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 34

3 Functional Principles of Service Discovery for Small Systems 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Functional Principles of Service Discovery . . . . . . . . . . . . . . 39

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 The Service Discovery Environment . . . . . . . . . . . . . 39
3.2.3 Service Discovery Principles . . . . . . . . . . . . . . . . . . 40

3.3 Failure Recovery Rules During Consistency Maintenance . . . . . . 45
3.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Consistency Maintenance and Failure Recovery In Service

Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Consistency maintenance mechanisms . . . . . . . . . . . . 48
3.3.4 Recovery rules for consistency maintenance . . . . . . . . . 49

3.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 53

4 FRODO System Overview 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 FRODO Design Approach . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 FRODO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Configuration Discovery . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3 SD Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Configuration Update . . . . . . . . . . . . . . . . . . . . . 69

4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 70

5 Evaluation 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Modeling and Verification of FRODO . . . . . . . . . . . . . . . . 76

5.2.1 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Property Modeling . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Verification Results . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Performance Benchmark through Simulations . . . . . . . . . . . . 85
5.3.1 Consistency Maintenance In Jini, UPnP and FRODO . . . 85
5.3.2 Recovery Rules in Jini, UPnP and FRODO . . . . . . . . . 87
5.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 87
5.3.4 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . 89
5.3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 95
5.3.6 Investigating the Impact of the Backup in FRODO . . . . . 105

5.4 Implementation of FRODO . . . . . . . . . . . . . . . . . . . . . . 107



CONTENTS ix

5.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusion 111
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Future Work and Reflections . . . . . . . . . . . . . . . . . . . . . 113

List of Figures 117

List of Tables 123

Bibliography 125

Curriculum Vitae 133





Chapter 1
Introduction

Mathematicians stand on each other’s shoulders,
while computer scientists stand on each other’s toes.

R.W.Hamming

This thesis fits within the context of three interconnected paradigms; autono-
mous computing, pervasive computing and pervasive home computing. We first
explore the existing challenges in all three paradigms. We then describe the the-
sis focus and the Research Question for the home environment. We conclude by
giving an overview of the contributions in this thesis.

1.1 The Context

Computer scientists can learn much from how the human body manages itself
autonomously, and apply the same techniques to building distributed systems. This
is how autonomous computing, an initiative of IBM [Mur04] sees the future of
computer systems. An autonomous system has at least one of the following four
properties [Gan03]:

(A1) Self-configuring. Systems that adapt automatically to dynamically changing
environments. The systems can dynamically “on-the-fly” add new hardware
and software to the system infrastructure with no disruption of services.

(A2) Self-healing. Systems discover, diagnose and react to disruptions. The
objective of self-healing is to minimize outages to keep applications available
at all times.

(A3) Self-optimizing. Systems monitor and tune resources automatically. Self-
optimization enables hardware and software systems to maximize resource

1



2 INTRODUCTION 1.1

utilization to meet end-user needs without human intervention. Resource
allocation and workload management must allow dynamic redistribution of
workloads to systems that have the necessary resources to meet workload
requirements.

(A4) Self-protecting. Systems anticipate, detect, identify and protect themselves
from threats. Self-protecting systems must have the ability to define and
manage access to computing resources, to protect against unauthorized ac-
cess, to detect intrusions and report and prevent these activities as they
occur.

Autonomy of distributed systems is also one of the fundamental characteri-
stics of the more ambitious pervasive (or ubiquitous) computing. The vision of
pervasive computing is elegantly articulated in Mark Weiser’s acclaimed seminal
paper published in 1991 by Scientific American [Wei91]:

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.”

To realize the Weiser vision of pervasive computing, Satyanarayanan [Sat01]
and Saha and Mukherjee [Sah03] pose the following research challenges:

(B1) Effective use of smart space. A smart space is an environment that has
embedded computing capability in its surrounding physical infrastructure
or material. One example of a smart space is the home environment, where
a home owner’s electronic profile allows the temperature and lighting in the
home to adjust. Tangible user interfaces [Kle04; Sco02] effectively augment
the physical world by integrating digital information with everyday physical
objects, such as intelligent cups [Gel99], and clothing [Man96].

(B2) Invisibility. Human intervention should be so minimal, that technology dis-
appears into the background of everyday life. Therefore, a pervasive system
should continuously meet user expectations and rarely present unpleasant
surprises.

(B3) Resource-constraints. The system should be able to support resource-lean
devices. Embedded, wireless and mobile devices have weaker local resources
(e.g. battery power, memory, processing power), compared to static and
wired devices [Sat96].

(B4) Heterogeneity. The system should adjust, integrate and mask differences in
environment, network, device and system platform.

(B5) Context-awareness and management. Applications should have perception
on their environment, make timely and effective decisions, and act accor-
dingly.



1.1 THE CONTEXT 3

(B6) Localized scalability. Increased density of embedded devices in one area
should not have severe implications on bandwidth, energy and distraction
for mobile users.

(B7) Security and privacy. Devices embedded in smart spaces (and worn on our
bodies) communicate seamlessly with any number of remote devices. In
these interactions, information is shared and exchanged. Therefore, there is
an increased risk to security and privacy.

This thesis focuses on the autonomy in a pervasive home system. The perva-
sive home system subsumes the constraints of pervasive computing, and also has
challenges of its own. These challenges are illustrated by Edwards and Grinter
from Xerox Palo Alto Research Center as the Seven Challenges for a ubiquitous
home [Edw01].

(C1) No system administration at home. Unlike the more professional office
environment, the home has no system administration. Therefore, self-
configuration and self-healing are even more important in the home than
in another environment like an office.

(C2) Reliability. Home owners are less tolerant to their appliances crashing than
desktop users (a TV should work at least for 5 years). Therefore, the prac-
tice of designing for reliability must be integrated into the development
cultures that build smart home technologies (by devoting substantial time
and resource). The tradeoff to reliability is simplicity (design becomes more
complex because of fault-tolerant measures), intelligibility, and ease of ad-
ministration, which are also requirements for domestic technologies.

(C3) Impromptu interoperability. The home consists of devices with a number
of components, acquired at different times, from different manufacturers,
and created under different design constraint and conditions. And yet, de-
vices should interconnect with each other with little or no advance planning
or implementation. This challenge goes beyond issues of standardization
for defining how devices should interoperate. New connectivity models are
needed, beyond simple prior agreement or standard protocols and interfaces.

(C4) Understand and manage unpredictable technologies. Home owners need to
be made aware of how technologies work in an easy-to-understand way. This
is so that they can deal with unpredictable behaviors (such as when our wi-
reless speakers connect with a neighbor’s network). Therefore, “accidents”
should be understood, repaired, or better yet, prevented, when new devices
are added, old devices are removed, devices from different manufacturers
coexist, and wireless connectivity extends beyond the walls of the home.

(C5) Social implications. Studies have to be done on how smart home technolo-
gies impacts the dynamics of the home, and society itself. Examples include
studying the impact on privacy issues, and beliefs on good parenting.



4 INTRODUCTION 1.2

(C6) Inference in the presence of ambiguity. The system should correctly infer
human state and intent, based on received inputs, and take the necessary
actions. The key question is on how much inference is required, and the
problems caused by uncertain inferences and decisions. Context-aware app-
lications usually concern themselves with the rules of inference (e.g. “when
family members are gathered in the kitchen, heat coffee”). Work has to be
done on determining how capable is the system in detecting or arriving at
a conclusion. Provisions should be made for the user to override the system
behavior.

(C7) Adapt technology for domestic use. Technologies should be grounded for
the realities of the home. The stable and compelling routines of the home
override even the abilities of the technology itself. Therefore, studies have to
be carried out to understand how home owners appropriate and adopt new
technologies (an example success story is the pervasive use of telephones).

Figure 1.1 shows the relationship among the research challenges for autono-
mous, pervasive and home computing. Invisibility (minimum human intervention)
is a fundamental attribute of a pervasive system. Invisibility is achieved by imple-
menting autonomous behaviors; self-configuration, self-healing, self-optimization
and self-protection. The pervasive home environment inherits all the research
challenges from pervasive computing, except for localized scalability (although it
can be argued that future homes might require scalability because of a very large
number of sensors).

1.2 Thesis Focus: Autonomous Service Discovery

All the challenges listed above for autonomous computing (A1 to A4), perva-
sive computing (B1 to B7), and pervasive home computing (C1 to C7) pose inte-
resting research questions. However, as illustrated in Figure 1.1, self-configuration
is a central theme in each of the three domains. One of the most widely used
techniques contributing to self-configuration is service discovery. This observa-
tion, combined with our specific interest in the home environment gives rise to
the following Research Question:

Research Question: How to enable a variety of home appliances to discover
each other’s services effectively and efficiently?

To address this Research Question, we focus on building a service discovery
system with properties appropriate to the home environment. In the wider con-
text, service discovery is a fundamental step for intelligent applications, before
they can collaborate to perform a certain function. Service discovery in perva-
sive computing acts as a naming system (analogous to Domain Name Service for
the Internet), but goes further by autonomously coordinating the discovery of



1.2 THESIS FOCUS: AUTONOMOUS SERVICE DISCOVERY 5

PERVASIVE HOME COMPUTING

(C3) Impromptu integration in
        the face of heterogeneity

(C5) Social implications

(C4) Understand and manage
        unpredictable technologies

(C6) Inference in the
        presence of ambiguity

(C7) Adapt technology for
        domestic use

(C2) Reliability

  (C1) No system administration

PERVASIVE COMPUTING

(B1) Effective use of smart space

(B6) Localized scalability

(B5) Context-awareness and
        management

(B2) Invisibility

(B7) Security and privacy

(B4) Heterogeneity

(B3) Resource constraints

AUTONOMOUS COMPUTING

(A3) Self-optimization

(A4) Self-protecting

(A2) Self-healing

(A1) Self-configuring

Figure 1.1: Relating the research challenges in autonomous, pervasive and home com-
puting. Arrows are used for challenges that are interrelated in the three paradigms.
Self-configuration (A1) is an inherent property of service discovery, which removes (or
requires only minimal) system administration (C1). We show that by implementing the
properties of autonomous computing, invisibility (B2) is achieved. We specifically focus
on the 3Rs; Reliability (C2), Resource-constraints (B3) and heteRogeneous devices and
network (B4).

new services, detection of defunct services, and updating applications on service
availability and state changes. Hence, service discovery offers self-configuration
(A1) to pervasive systems so that devices can “plug-and-play”, with no (or mini-
mum) additional intervention (C1). Therefore, A1 and C1 are inherent properties
of service discovery.

The specific contributions of this thesis extend service discovery for the per-
vasive home by targeting what we call the 3Rs: Reliability, Resource-constraints
and heteRogeneity. We choose these challenges because they directly address the
Research Question: a reliable system is effective if it can cope with communica-
tion and node failures. We take into consideration resource-constraints because
we require an efficient utilization of resources. We also mask heterogeneity of de-
vices and networks because the home consists of a variety of device architectures
and networks (e.g. wired, wireless).



6 INTRODUCTION 1.3

(C2) Reliability. We incorporate various fault-tolerant measures in our system
design so that the system can recover from communication and node failures.
Therefore, the system regulates its own recovery; the system self-heals (A3).

(B3) Resource-constraints. Resource-awareness is required because new, so-
phisticated technologies should not increase the cost of devices. Since cost
increases with resource usage, the system is made resource-aware. A resource-
aware system not only reduces cost of implementation, but also makes
available the services of resource lean devices.

(B4) Heterogeneity. The home consists of devices with a variety of different
architectures and network connectivity. To enable these devices to discover
each other, service discovery should minimize dependencies on the capabili-
ties of underlying protocol stacks. Therefore, our service discovery protocol
is portable over heterogeneous devices and networks.

The thesis focuses on the communication aspects of service discovery for the
home environment. We do not address how to efficiently describe services (service
ontology). This is because we give more importance to the 3Rs, which are not
common factors in existing service discovery protocols. However, this work can be
extended with existing formats of service descriptions. Furthermore, we believe
that the results presented in this thesis are applicable not only for the home
environment, but also for other ad-hoc smart spaces (such a conference venue,
or an office environment). This is because the 3Rs are equally important in the
home as elsewhere. On the other hand in other domains, scalability and security
may be more important than in the home; these properties are beyond the scope
of the thesis. From now on, we only focus on the selected challenges which we call
as the 3Rs in this thesis. We do not discuss the rest of the As, Bs and Cs listed
in Section 1.1.

Now that we have identified the research focus and objectives, we provide the
thesis overview and the contributions in the next section.

1.3 Thesis Overview
We begin by describing the state of the art in service discovery in the next chap-
ter. In Chapter 3, we zoom in on small-scale systems and state the fundamental
properties of service discovery in seven Service Discovery Principles. We also give
various self-healing methods to satisfy the principles. In Chapter 4, we describe
our design approach. We then give an overview of our own service discovery
system which satisfies the 3Rs. We analyze and evaluate our design choices in
Chapter 5. Finally, we summarize the contributions in the thesis, and suggest
future work in Chapter 6.

We now elaborate further the contributions of each chapter in some detail.



1.3 THESIS OVERVIEW 7

Chapter 2. We describe the general design space of service discovery, and give a
taxonomy of the state of the art. We begin by clarifying the fundamental concepts
of service discovery, in relation to the distributed system paradigm (architecture,
functionality, and related distributed system models). We then specify the ope-
rational aspects that impact the design of a service discovery system, and give
an overview of the design space. We proceed to give a taxonomy that first ana-
lyzes state of the art solutions with respect to the operational aspects, before
comparing their functionalities. The result of our analysis enables us to identify
opportunities for design improvements for the home, with respect to the 3Rs.

Chapter 3. We focus on how to provide reliability in service discovery, which is
one of the challenges in the 3Rs. A reliable service discovery system is effective
against communication and node failures, thus satisfying the effectiveness criteria
in the Research Question. Towards this goal, we specify the functional principles
of service discovery for small-scale systems. We present seven Service Discovery
Principles that state the fundamental properties of service discovery. We then
focus on how to satisfy the principles for consistency maintenance. Consistency
maintenance allows applications to receive updates on service attributes. Our
analysis reveals that to effectively regain consistency in the face of failures, correct
behavior of the functionalities in service discovery is required. Therefore, we
provide a novel classification of failure recovery rules that facilitate the system to
satisfy the Service Discovery Principles.

Chapter 4. We focus on building a service discovery system for the home environ-
ment that satisfies the 3Rs. We first describe our design approach which inspired
the formulation of the Service Discovery Principles and the recovery rules presen-
ted in Chapter 3. We then present a Framework for Robust and Resource-aware
Discovery (FRODO), our service discovery system built for the home environ-
ment. We explore the design choices in FRODO, which determine a subset of the
design space described in Chapter 2. FRODO is reliable in the face of communi-
cation and node failures, supports resource-constrained devices, and is portable
over heterogeneous devices and networks.

Chapter 5. We analyze and evaluate our design choices in FRODO, using several
different techniques such as model-checking, simulation, and prototyping. To our
knowledge, no other service discovery design has been analyzed this thoroughly
during its development. We model-check our design to identify and rectify de-
sign errors. The result of the model-checking is a list of hard-to-detect design
errors that once rectified, enable our FRODO model to satisfy the Service Disco-
very Principles. We also use simulations to compare the performance of FRODO
against Jini and UPnP, two well-known service discovery protocols appropriate
for the home. As a result of our design efforts, the responsiveness, effectiveness
and efficiency of our design is better than that of Jini and UPnP at failure rates



8 INTRODUCTION 1.4

which are realistic in the home environment. Finally we describe the implemen-
tation of our prototype, and validate a selected set of simulation results against
the implementation. The prototype is a resource-lean realization of the FRODO
protocol.

Chapter 6. We summarize our contributions in this chapter. We also highlight
several future research directions for the FRODO system, and for service discovery
in general.

The contributions of this thesis are a step towards achieving the vision of a per-
vasive home system. We hope to convince the reader that the design concepts
and principles apply not only to the home environment, but are also applicable
to similar smart spaces.

1.4 Publications

To conclude, we list our refereed conference publications and technical reports
that constitute the core of the thesis.

1.4.1 Refereed Publications

1. Sundramoorthy, V. and Scholten, J. and Jansen, P.G. and Hartel, P.H.
Service discovery at home. In 4th International Conference on Information,
Communications & Signal Processing and 4th IEEE Pacific-Rim Conference
On Multimedia (ICICS/PCM), Singapore, Dec 2003, pp. 1929-1933. IEEE
Computer Society Press.

2. Sundramoorthy, V. and Tan, C. and Hartel, P.H. and den Hartog, J.I. and
Scholten, J. Functional Principles of Registry-based Service Discovery. In
30th Annual IEEE Conference on Local Computer Networks (LCN), Sydney,
Australia, Nov 2005. pp. 209-217. IEEE Computer Society Press.

3. Sundramoorthy, V. and van de Glind, G.J. and Hartel, P.H. and Scholten,
J. The Performance of a Second Generation Service Discovery Protocol In
Response to Message Loss. In 1st International Conference on Communi-
cation System Software and Middleware (COMSWARE), New Delhi, India,
Jan 2006. pages to appear. IEEE Computer Society Press.

4. Sundramoorthy, V. and Hartel, P.H. and Scholten, J. On Consistency Main-
tenance In Service Discovery. In 20th IEEE International Parallel & Distri-
buted Processing Symposium (IPDPS), Rhodos Island, Greece, Apr 2006.
pp. 10 in CDROM. IEEE Computer Society Press.



1.4 PUBLICATIONS 9

1.4.2 Technical Reports
1. Sundramoorthy, V and van de Glind, G.J. Frodo High-Level and Detai-

led Design Specifications version 1.0. Technical Report TR-CTIT-06-25,
Enschede, June 2006.

2. Sundramoorthy, V and Tan, C. Frodo Dt-Spin Models version 1.0. Techni-
cal Report TR-CTIT-06-27, Enschede, June 2006.





Chapter 2
A Taxonomy of Service Discovery

By viewing the old we learn the new.
Chinese Proverb

2.1 Introduction
Although our work is within the scope of the home environment, we first analyze
the general concepts and issues in service discovery. This analysis places service
discovery in the context of distributed systems by describing service discovery as
a third generation naming system. Next, we describe the different architectures
in service discovery. We then specify the objectives and functions of service dis-
covery. We show how these functions are implemented, in relation to the different
models in the distributed systems. We then proceed to show how service disco-
very fits into a system, by characterizing operational aspects. Subsequently, we
describe how existing state of the art performs service discovery, in relation to
the operational aspects and functions of service discovery.

Contributions: This work diverges from existing surveys [Bet00; Van05; Ric00]
which categorize only the functional features of service discovery protocols, based
on architectural and programming platform differences. We aim to:

1. Clarify the fundamental concepts of service discovery in relation to the dis-
tributed system paradigm.

2. Specify the operational aspects that impact the design of a service discovery
system, and the resulting design solutions.

3. Provide a taxonomy that first analyzes state of the art solutions with respect
to the operational aspects, before comparing functional behaviors.

11



12 A TAXONOMY OF SERVICE DISCOVERY 2.2

4. Identify opportunities for design improvements to produce a small-scale,
unattended system for the home.

This chapter is organized as follows. In Section 2.2, we provide an under-
standing of service discovery as a third generation name discovery system. In
Section 2.3, we describe the service discovery system in terms of the participating
entities, architecture and topology. We define the service discovery objectives and
functions in Section 2.4. We identify the fundamental distributed models of ser-
vice discovery in Section 2.5. In Section 2.6, we analyze the operational aspects
for a service discovery system. We proceed to summarize a selection of widely
used service discovery systems in Section 2.7. In Section 2.8, we give a taxonomy
of state of the art solutions to the operational aspects, compare the functional
implementations, and identify areas for improvements. We conclude our findings
in Section 2.10.

2.2 Service Discovery: Third Generation Name Discovery
Service discovery allows applications in a distributed system to discover and share
network entities. This goal is shared by a class of distributed systems that we
refer to as name discovery systems. A name is a string of bits that is used to
identify a variety of entities, such as computers, peripherals, applications, remote
objects, files, etc. In the context of name discovery systems, a name is not the
address of an entity (addresses are uninterpreted bit patterns such as Ethernet
addresses [Nee93]), but a name is the persistent identifier for the entity, or human
understandable textual description [Tan02b]. Consistently named entities enable
computers to communicate with one another via a distributed system, and share
(access to) the entities [Cou05]. A name has a list of attributes associated with
it. An attribute is a name-value pair that describes a property of the entity

We classify name services, such as Grapevine [Bir82], GNS [Lam86] and DNS
[Moc88], developed in the 1980s as first generation name discovery systems. A
name server stores a set of bindings between the name and the attribute list of
an entity, and resolves queries for the entity. A query based on the name simply
returns the list of attributes that describes the entity.

Directory services such as Profile [Pet88], Univers [Bow90], X.500 [Cha94] and
LDAP [How99], developed in the 1990s are classified as second generation name
discovery systems. Directory services provide a more powerful mechanism for
querying entities. Directory services perform attribute-based queries that return
the names associated with the attribute. An example is a query that on the basis
of a given telephone number, returns the name of the associated employee.

The first two generations of name discovery systems share the following context
and limitations:

� Context: Computer-based environment with predominantly wired connec-
tivity, where nodes are mostly static, names and attributes rarely change,



2.3 SERVICE DISCOVERY ARCHITECTURE 13

and the system is reliable

� Limitation: Static infrastructure of servers and directories, that requires
configuration and maintenance by privileged system administrators.

Service discovery inherits the fundamental concepts of traditional name dis-
covery systems, where entities are named according to a naming standard, and
attribute-based queries return the names of the matching entities. A service is
defined as the following:

A service is a distinct part of a computer system that manages a collection of
related entities and presents their functionality to users and applications [Cou05].

We classify service discovery as a third generation name discovery system be-
cause service discovery satisfies the requirements of ubiquitous computing [Wei91],
by enlarging the context and relaxing the limitations of traditional name discovery
systems.

� Context: An environment consisting of a variety of embedded devices (not
just PCs), with wired and wireless connectivity, static and mobile nodes,
which undergoes frequent changes of resource availability and attribute va-
lues, and is vulnerable to failures. Therefore, service discovery is a funda-
mental building block for pervasive computing.

� Solutions: Service discovery systems deliver the promises of pervasive com-
puting with the following solutions:

1. Service discovery provides self-configuring and self-healing ca-
pabilities for a spontaneous network of devices. A service disco-
very system allows entities to enter and leave the system automatically,
with minimum supervision and maintenance.

2. Service discovery supports access to services. Traditional name
discovery systems typically discover information, such as an IP address
for a given name in DNS, employee information or phone numbers in
LDAP. A service discovery system supports access to services, where
discovered service descriptions may contain executable programs, or
URLs to the service.

Therefore, service discovery is a solution for naming and discovering resources
in a versatile, but dynamic network of devices.

2.3 Service Discovery Architecture

This section describes the entities and the different architectures of service
discovery.



14 A TAXONOMY OF SERVICE DISCOVERY 2.3

User Manager

User Manager

Registry

(a) non-Registry based 
architecture

(b) Registry based 
architecture

Figure 2.1: (a) The non-Registry architecture consists of Users and Managers that
multicast queries and service advertisements. (b) The Registry architecture uses unicast
for registering services and sending queries.

A service is specified by a Service Description (SD), which typically describes
the service in terms of: (1) device type (e.g. printer), (2) service type (e.g. color
printing) and (3) attributes (e.g. location, paper size). There are three types of
entities in a service discovery system; a Manager owns the SDs, a User has a set
of requirements for the services it needs, and a Registry caches available services
so that Users can discover the services through queries to the Registry. A node
can behave as a User, Manager, Registry or a combination of these roles.

There are two basic types of architecture in service discovery, as shown in
Figure 2.1; Registry and non-Registry based. In the Registry-based architecture,
Registries can be deployed by a system administrator, or automatically elected
by the nodes in the system. Once the Registry is available, the rest of the nodes
in the system will have to discover the Registry before services can be registered
and queried. Unicast communication in the Registry-based architecture reduces
network traffic, thus increasing scalability. In the non-Registry-based architecture,
Users and Managers can perform multicast queries and service advertisements.
Therefore, unlike the Registry-based architecture, the system is not vulnerable to
single point of failure issues. However, since extensive multicast is used, network
traffic increases, causing scalability issues.

In the non-Registry architecture, there are two types of logical topologies: (1)
Meshed topology, as shown in Figure 2.2(a), where all entities receive each other’s
multicast queries and service advertisements. (2) Clustered topology, where enti-
ties form clusters based on some criteria (e.g. service type or location). Members
of a cluster communicate only with each other, thus service advertisements and
queries are limited within the cluster. A node may also belong to a combination
of clusters, and therefore has a wider scope for service discovery. Figure 2.2(b)
gives an example of the cluster-based topology.

The Registry architecture has four types of logical topologies: (1) An un-
connected Registry topology, as shown in Figure 2.3(a). In this topology, Regis-
tries do not communicate with each other, but Managers and Users may associate
themselves with multiple Registries. (2) A meshed Registry topology, as shown in
Figure 2.3(c), where Registries communicate with each other as peers. A Registry



2.3 SERVICE DISCOVERY ARCHITECTURE 15

UA MA

MA UA,B

UB

MB

UA MB

MA UB

(a) Meshed topology (b) Clustered topology

Figure 2.2: Logical non-Registry topologies. (a) In the meshed topology, Users, U and
Managers, M can listen to each other’s queries and service advertisements. (b) In the
cluster-based topology, Users, U and Managers, M may form a logical cluster according
to some criteria. A and B denotes two types of clusters, where UA,B belongs to both
clusters, and is able to discover services of both clusters.

U1

R1 R2

R1

U2

R2

M2

R1

R3

R4

R2 R3

M1

(c) Tree-based Registry 
topology

(b) Meshed Registry 
topology

(a) Unconnected 
Registries topology

RA RA

RA RA,B

RB

RB

(d) Clustered Registry 
topology

Figure 2.3: Logical Registry topologies. (a) In the unconnected Registry topology, Re-
gistries, R1 and R2 do not communicate with each other, but User, U1 and Manager,
M2 may register and discover services from both R1 and R2. (b) In the meshed Regis-
try topology, Registries are peers to each other, and forward messages to all their peers.
(c) In the tree-based Registry topology, Registries R1 and R2 are child Registries of R3.
Child Registries may forward messages to parent Registries. (d) In the clustered Registry
topology, Registries optimize the tree or mesh topology by limiting query processing to
a select few Registries. A and B are two clusters, where Registries, RA and RB can
only communicate with the members of their own cluster. RA,B is able to communicate
within both clusters.



16 A TAXONOMY OF SERVICE DISCOVERY 2.4

forwards queries and replicas of its cache to all its peers. (3) A tree-based Registry
topology, where Registries form a parent-child relationship, based on some crite-
ria (such as location or resource-constraints). A child Registry, such as shown
in Figure 2.3(b) forwards queries to its parent when it does not find matching
services within its own cache. The query may traverse all or parts of the hierar-
chy, depending on some query processing optimization criteria. (4) A clustered
Registry topology, as shown in Figure 2.3(d), where Registries form clusters based
on service type or location. This topology optimizes the tree-based and meshed
topology, where query processing is done only by a select few Registries.

2.4 Service Discovery Functions

We state the main objectives of service discovery as:

O1: Discover services that match requirements

O2: Detect changes in service availability and attributes

Toward accomplishing these objectives, we classify service discovery tasks into
four main functions; Configuration Discovery, Service Registration, SD Discovery
and Configuration Update. The term “configuration” refers to the entities in the
system: Manager, User and Registry. The Configuration Discovery and Service
Registration functions exist to facilitate service discovery. O1 is accomplished by
the SD Discovery function, while O2 is accomplished by the Configuration Update
function. Each of the four functions can be accomplished using several different
methods. We use italics to indicate the methods:

1. Configuration Discovery - This function allows Registries to be setup,
and identities of entities (e.g. Registries or cluster members) in the system
to be discovered. There are two sub-functions of Configuration Discovery:

(a) Registry auto-configuration - Allows the system to configure one or
more Registries automatically through (a) Registry election algorithms,
or (b) Registry reproduction, where a parent Registry spawns a child
Registry. The Registry election or reproduction is done based on some
criteria such as resource superiority, load threshold, service type or
location. Registry auto-configuration is done on the fly, without su-
pervision.



2.4 SERVICE DISCOVERY FUNCTIONS 17

(b) Entity discovery - Allows entities in the system to discover a Registry
or cluster through (a) active discovery, where nodes initiate the disco-
very by sending announcements, or (b) passive discovery, where nodes
discover the required entities by listening for announcements. In some
systems, discovery via active and passive methods is integrated with
the underlying routing protocol to optimize bandwidth utilization.

2. Service Registration - This function allows Managers to register their
services at a Registry. Registration methods include (a) unsolicited regis-
tration, where nodes request the Registry to register their services and (b)
solicited registration, where Registries request new nodes to register. The
Registry keeps a cache of available SDs, and updates them according to
requests from the Managers.

3. SD Discovery - This function allows Users to obtain SDs that satisfy their
set of requirements. Users may cache the discovered SDs to reduce access
time to the service, and reduce bandwidth utilization by avoiding multiple
queries. There are two sub-functions in SD Discovery:

(a) Query - This is a pull-based model where Users initiate (a) unicast
query to a Registry, or (b) multicast query. The query specifies the
requirements of the User. The Registry or Manager that holds the
matching SD replies to the query.

(b) Service notification - This is a push-based model, where Users receive
(a) unicast notification of new services by the Registry, or (d) multicast
service advertisements by Managers.

4. Configuration Update - This function monitors the node and service
availability, and changes to the service attributes. There are two sub-
functions in Configuration Update:

(a) Configuration Purge - Allows detection of disconnected entities through
(a) leasing and (b) advertisement time-to-live (TTL). In leasing, the
Manager requests and maintains a lease with the Registry, and refres-
hes the lease periodically. The Registry assumes that the Manager who
fails to refresh its lease has left the system, and purges its information.
With TTL, the User monitors the TTL on the advertisement of a dis-
covered Manager. The User assumes the Manager has left the system
if the Manager fails to advertise before its TTL expires, and purges its
information.

(b) Consistency Maintenance - Allows Users and Registries to detect upda-
tes on cached SDs. Updates can be propagated using (a) push-based
update notification, where Users and Registries receive notifications
from the Manager, or (b) pull-based polling for updates by the User



18 A TAXONOMY OF SERVICE DISCOVERY 2.5

Table 2.1: Service discovery functions, methods and related distributed system models

Function Subfunction Method Distributed model
Configuration
Discovery

Registry auto-
configuration

(a) Registry election, (b)
Registry reproduction

Periodic announce / lis-
ten

Registry discovery (a) active discovery, (b)
passive discovery

Service Re-
gistration

(a) solicited registration,
(b) unsolicited registra-
tion

Caching, replication,
periodic announce /
listen

SD Discovery Query (a) unicast query, (b)
multicast query

Query processing,
caching, periodic
announce/ listen

Service notification (a) Registry notification,
(b) multicast service ad-
vertisement

Configuration
Update

Configuration
Purge

(a) leasing, (b) advertise-
ment TTL

Periodic announce / lis-
ten, eventual consis-
tency, leasing

Consistency Main-
tenance

(a) pull-based polling for
update by Users, (b)
push-based update noti-
fication by Registry to
Users, (c) push-based up-
date notification among
Registries

Eventual consistency,
Publish/subscribe

to the Registry or Manager for a fresher SD. (c) In a multiple Regis-
try topology, push-based update notifications among Registries can be
done to achieve consistency.

A service discovery function implements one or more distributed models to
accomplish its tasks. In the next section, we describe the distributed models of
service discovery.

2.5 Distributed Models Of Service Discovery

We now describe the fundamental models on which all implementations of
service discovery are based.

A service discovery system inherits the general characteristics of coordination-
based distributed systems. A coordination-based distributed system separates
computation and coordination. The computation part allows a number of proces-
ses to manipulate data, while the coordination part is responsible for communi-
cation and cooperation between the processes [Pap98]. The coordination model



2.5 DISTRIBUTED MODELS OF SERVICE DISCOVERY 19

fully decouples the communicating entities (User, Manager and Registry) in terms
of time and space, thus providing asynchronous communication and operations.

� Space decoupling: the communicating entities do not need to know each
other. A User subscribes to receive messages related to the subject it is
interested in (e.g. printing service). The Manager publishes an event to an
event service (can be located in the Registry). The Manager does not need
to hold references to the subscribers (e.g. destination addresses), nor does
the Manager need to know how many Users have subscribed to its service.
Similarly, the subscribed User does not need to hold references to the Ma-
nagers, neither does it need to know how many Managers are participating
in the interaction. This model is typically used when point-to-point com-
munication needs to be kept minimum. Furthermore, resource-lean entities
can depend on more powerful entities to manage event dispatching.

� Time decoupling: the communicating entities do not need to be actively
participating in the interaction at the same time. The Manager can publish
some events while the subscribed User is disconnected, and conversely, the
User can be notified about the the event when the Manager that publis-
hed the event is disconnected. This model is useful in environments where
entities frequently connect and disconnect, such as in mobile networks.

Based on the concepts of coordination-based distributed systems, service dis-
covery systems typically comprise a combination of the following distributed mo-
dels:

1. Periodic announce/listen - Most service discovery protocols combine
periodicity, and the announce/listen model to detect new services or nodes
[Fen97; Han98]. The model helps Users to detect the presence of the Re-
gistry and the Manager. The lack of an expected announcement indicates
to the User that the Manager has left the system. This model is applied in
all four service discovery functions, and is especially useful to recover from
communication and node failures.

2. Caching, replication and consistency - Caching is a technique for im-
proving scalability and performance in distributed systems. In Service Re-
gistration, the Registry caches available SDs. In SD Discovery, Users ty-
pically cache the discovered SDs to reduce the access time to the service,
and bandwidth usage. A service discovery system may contain a set of rep-
licated Registries to increase reliability and improve performance. Caching
and replication requires consistency maintenance to preserve the integrity
of the cached SD. Service discovery complies with eventual consistency, be-
cause it is client-centric, which tolerates transient inconsistencies, just like
Bayou [Pet96], the distributed database system for mobile users. The even-
tual consistency model is applied in Configuration Update.



20 A TAXONOMY OF SERVICE DISCOVERY 2.6

3. Leasing - Leasing [Gra89], is a time-based mechanism that provides effi-
cient consistent access to cached data in distributed systems. In service
discovery. leases between communicating entities are used for automatic
garbage collection. The lessor periodically refreshes its lease with its coun-
terpart to indicate its continuous existence, or interest in a service. The
lessee purges an entity that fails to refresh its lease. Flexible leasing, as
proposed by Duvvuri et al. [Duv03] can also be used so that the expiration
time is adapted to suit the demand of the lessor, while the lessee can hold
the upper limit on the maximum lease period for a service. This model is
typically used in Configuration Purge.

4. Query processing - Query processing [Jar84] has been extensively explored
in conventional database systems [Gad85; Leh86]. In the context of service
discovery, SD Discovery may apply a query processing model to optimize
query propagation, such as by using DHTs [Sto03; Row01] to reduce com-
munication cost. The function also uses query processing when the Registry
matches the requirements of the the User against registered SDs.

5. Publish/subscribe - the publish/subscribe mechanism [Oki93] provides
asynchronous communication via loose decoupling of space and time, and
benefits large scale settings such as the Internet [Not04], and mobile en-
vironments [Hua01]. Subscribers express their interest in an event, or a
pattern of events, and are subsequently notified of any event, generated by
a publisher, which matches their registered interest. The event is asynchro-
nously propagated to all interested subscribers, usually through multicast.
This model is typically used in Consistency Maintenance.

Table 2.1 summarizes service discovery functions, methods and the related dis-
tributed models for each function. Service discovery systems use a combination
of models described above as the building blocks of its functions. Every service
discovery system implements the functions according to its own design rationale.

2.6 Operational Aspects of Service Discovery
This section analyzes the design aspects related to the operational environment
of service discovery systems, and lists solutions found in the wider distributed
system paradigm, but tailors them to the service discovery context.

The operational environment influences the design rationale of service disco-
very systems. For example, a stable, wired office environment, with good system
administration may not require too much emphasis on fault-tolerance towards
communication and node failures. However, in the context of the less controlled
home-environment, it becomes a necessity, because home owners are not restricted
in how they manage their appliances (unplugging, moving). In a wireless, mobile
environment, the system becomes even more vulnerable to certain communication



2.6 OPERATIONAL ASPECTS OF SERVICE DISCOVERY 21

and node failures. We identify the following as design aspects for service discovery
in ubiquitous computing:

1. System size - We define “system size” in terms of two dimensions: di-
stance and the number of nodes. Small sized systems such as Personal Area
Networks (PAN) and Local Area Networks (LAN) contain a limited number
of nodes, and do not require a high degree of scalability. Large systems such
as Metropolitan Area Networks (MAN) and Wide Area Networks (WAN) in-
cluding the Internet require a scalable service discovery system. Scalability
measures include setting up multiple Registries, whether in a tree or mesh
topology, and applying query optimization and load balancing techniques
to conserve bandwidth.

2. Lossy environment - Service discovery systems in wireless and mobile
networks must assume that they will operate in a lossy environment with
communication and node failures. Communication failures include message
corruption, message loss and link failures. Message corruption is due to
interference, noise or multipath fading. Message loss is due to loss of signal
caused by physical obstacles, collisions, bandwidth limitations, etc. Link
failures, especially in ad-hoc networks, are caused by mobile nodes losing
radio contact with the destination node. Node failures include crash failures
and interface failures. Crash failures are caused when nodes abruptly disap-
pear from the system due to energy depletion, pulled out without warning,
and overloaded processors (nodes simply stop communicating). Interface
failures mean receiver and transmitter failure. Therefore, service discovery
systems should be fault-tolerant. Some examples of fault-tolerant mecha-
nisms in service discovery systems include redundant and replicated Regis-
tries, caching of alternate services, primary-based recovery protocols such
as Registry monitoring and Registry backup [Tan02b], retransmissions and
acknowledgments for reliable transmission, and containment of unreliable
behaviors by blacklisting suspicious nodes.

3. Resource constraints - Nodes with hardware constraints are known as
resource-lean nodes (low memory, processing power and energy). Systems
with resource-lean nodes require resource-aware service discovery functions.
One solution is to delegate more tasks to more powerful nodes. In systems
with low bandwidth availability, cross-layer dependencies such as service dis-
covery with routing knowledge, and efficient query processing among Regis-
tries (e.g. through DHTs) can help conserve bandwidth. Furthermore, load
balancing techniques help scale Registry-based architectures so that Regis-
tries do not overload.

4. Security - A secure service discovery system must support confidentia-
lity, message integrity and availability [Avi04]. Methods to address these
concerns include authentication of communicating entities, access control



22 A TAXONOMY OF SERVICE DISCOVERY 2.6

so only a select few are able to communicate, protection of sensitive ser-
vice attributes (e.g. location) by hiding the value, data integrity, so that
communicating entities can detect when data is tampered during transit,
and detection and blacklisting of malicious nodes (including authorized en-
tities). The challenge for a secure service discovery system is to maintain
self-configuration of the system, because the owner of the devices will most
probably be required to provide authentication and access control. Security
also consumes resource due to encryption algorithms. Most service disco-
very systems assume participating nodes are secure by delegating security
to the application layer. However, full fledged deployment of a service dis-
covery system will eventually require some secure measures integrated into
the service discovery functions.

5. System heterogeneity - Nodes in heterogeneous systems contain different
types of network connectivity (e.g. Ethernet, 802.11 a/b/g, IRDA), and a
variety of network stacks (e.g. transport, routing, addressing). A service
discovery protocol that abstracts away as much as possible the lower-layer
protocol stacks, and can perform its functions with minimum dependencies
allows easier deployment in a heterogeneous environment.

Figure 2.4 summarizes the five operational aspects and the respective soluti-
ons. By taking the operational aspects into consideration, it is possible to design
a system that addresses more than one type of operational issue. For example, an
architecture with replicated and redundant Registries supports a large and lossy
system. State of the art systems usually base their design rationale on their own
set of priorities for the design aspects, hence causing tradeoffs.



2.6 OPERATIONAL ASPECTS OF SERVICE DISCOVERY 23

Sy
st

em
 s

ize
Sy

st
em

he
te

ro
ge

ne
ity

Se
cu

rit
y

Re
so

ur
ce

-
co

ns
tra

in
ts

Lo
ss

y
en

vir
on

m
en

t

PA
N/

LA
N

W
AN

/M
AN

Co
m

m
un

ica
tio

n
fa

ilu
re

No
de

fa
ilu

re
Re

so
ur

ce
-le

an
no

de
s

Ba
nd

wi
dt

h
Co

nf
id

en
tia

lity
In

te
gr

ity
Av

ai
la

bi
lit

y

No
n-

Re
gi

st
ry

ar
ch

ite
ct

ur
e

Re
du

nd
an

t
Re

gi
st

ry
 re

pl
ica

s

Tr
ee

-b
as

ed
 R

eg
ist

ry
to

po
lo

gy

Ca
ch

e
al

te
rn

at
e

se
rv

ice
s

M
es

he
d 

Re
gi

st
ry

to
po

lo
gy

Pr
im

ar
y-

ba
se

d
re

co
ve

ry
 p

ro
to

co
ls

Re
tra

ns
m

iss
io

ns
 a

nd
ac

kn
ow

le
dg

em
en

ts

Bl
ac

kli
st

un
re

lia
bl

e 
no

de
s

Re
so

ur
ce

-a
wa

re
se

rv
ice

 d
isc

ov
er

y
fu

nc
tio

ns

In
te

gr
at

e
se

rv
ice

 d
isc

ov
er

y
fu

nc
tio

ns
 w

ith
ro

ut
in

g 
kn

ow
le

dg
e

Ef
fic

ie
nt

 q
ue

ry
pr

oc
es

sin
g

Lo
ad

 b
al

an
cin

g
te

ch
ni

qu
es

Pr
ot

ec
t s

en
sit

ive
in

fo
rm

at
io

n 
in

 S
D

Au
th

en
tic

at
io

n

Ac
ce

ss
 c

on
tro

l

En
cr

yp
te

d
co

m
m

un
ica

tio
n

Re
m

ov
e

de
pe

nd
en

cie
s 

on
un

de
rly

in
g 

pr
ot

oc
ol

st
ac

ks

Sh
or

t l
ea

se
/

an
no

un
ce

m
en

t
ex

pi
ry

 p
er

io
d

Si
ng

le
 R

eg
ist

ry

Se
rv

ice
 d

isc
ov

er
y

de
sig

n 
ra

tio
na

le

M
ul

tic
as

t
qu

er
ie

s

O
pe

ra
tio

na
l

as
pe

ct
s

De
sig

n
sp

ac
e

Un
co

nn
ec

te
d

Re
gi

st
ry

to
po

lo
gy

M
es

he
d

to
po

lo
gy

Cl
us

te
re

d
to

po
lo

gy
Li

gh
tw

ei
gh

t
pr

ot
oc

ol
 s

ta
ck

Pe
rio

di
c

Re
gi

st
ry

an
no

un
ce

m
en

ts
Pe

rio
di

c 
se

rv
ice

ad
ve

rti
se

m
en

ts

Cl
us

te
re

d 
Re

gi
st

ry
to

po
lo

gy

F
ig

u
re

2
.4

:
S
u
m

m
a
ry

o
f
o
pe

ra
ti
o
n
a
l
d
es

ig
n

a
sp

ec
ts

a
n
d

so
lu

ti
o
n
s,

ta
il
o
re

d
fo

r
se

rv
ic

e
d
is

co
ve

ry
.

T
h
e

d
es

ig
n

ra
ti
o
n
a
le

fo
r

a
se

rv
ic
e

d
is

co
ve

ry
sy

st
em

d
ep

en
d
s

o
n

it
s

o
w
n

re
le

va
n
t
se

t
o
f
o
pe

ra
ti
o
n
a
l
a
sp

ec
ts

.



24 A TAXONOMY OF SERVICE DISCOVERY 2.7

2.7 State of the Art

Having described the nature of service discovery in the context of distributed
systems from the point of view of (a) the architecture, (b) the functionality, (c)
the models underlying the implementations, and (d) the operational aspects, we
now investigate how existing service discovery systems fit into this mould.

We provide summaries of selected state of the art service discovery systems.
We choose to describe these systems because of their popularity in the type of
network and the size of system that they support. For ease of understanding, we
will maintain the terms Manager, User and Registry to represent the protocol-
dependent entities, even though the original papers use slightly different terms.

We divide the systems into two categories, based on the targeted system size:
(1) small systems, which includes LAN and PAN, with limited number of nodes,
and (2) large systems, which includes WAN and MAN, with a large number of
nodes. The system size has the most influence on the design decisions in existing
state of the art, where they implement similar service discovery functions and
methods, and Registry topology (e.g. in large systems, the Registry-based archi-
tecture is chosen, where Registries are replicated, and arranged in either tree or
mesh topology).

Unless mentioned specifically to support ad-hoc networks, the systems work
in infrastructure-based wireless networks, and by default, also work on wired
networks.

2.7.1 Small systems
Small systems are not usually concerned with scalability issues. The architecture
type can be Registry, non-Registry or a combination of Registry with multicast
query capability for Users (for resilience against single point of failure problems).
Small systems also provide more support for consistency maintenance than large
systems, because bandwidth utilization is a less critical issue.

1. Jini [Mic03b] - Jini was developed by Sun Microsystems, and is implemented
using the Java programming language. Jini is a Registry architecture, where the
Registry is called the Lookup Service. The Manager registers its service at the
Registry, by uploading the service proxy code. The data stored is typically a
part of a structured distributed shared memory, using tuple spaces, implemented
through JavaSpaces [Mic03a]. The User queries the Registry for services mat-
ching its requirements, and receives the proxy code of the service. The User also
requests the Registry to notify it if similar services register in the future. The
Manager maintains a lease with the Registry, where it periodically refreshes the
lease to indicate its continuous existence. The Registry automatically purges the
information on the Manager that failed to refresh its lease. If the Manager up-
dates its service description, it publishes an event to the Registry. The Registry



2.7 STATE OF THE ART 25

propagates the event to interested Users. The use of Java allows code mobility
and operating system flexibility for Jini devices. However, Jini uses the Java Vir-
tual Machine (JVM) and Java Remote Method Invocation (RMI), and depends
on TCP/IP for reliable communication. These technologies cause dependencies
on the underlying protocol stacks.

2. UPnP [Mic00] - Universal Plug and Play (UPnP) was developed by Micro-
soft, and is based on the Simple Service Discovery Protocol [Gol00]. UPnP is
a non-Registry based architecture. The User is called the Control Device, and
the Manager is simply called the Device. Service Description is described in
XML. The Manager sends multiple multicast messages periodically to announce
its presence and its services. The User also sends multicast queries to request
services matching its requirements. The Manager sends XML documents to the
User. The XML document provides the device and service descriptions along with
URLs to view the user interface of the Manager. The User controls the remote
service through the Simple Object Protocol (SOAP) [Gud03] and XML parsing
of action requests. The Manager updates its service through General Event No-
tification Architecture Base (GENA) [Coh94]. GENA publishes notifications to
subscribers. The Manager periodically sends multicast announcements, which is
used by the interested User to monitor the continued existence of the Manager.
The non-Registry based architecture eliminates single point of failure issues, and
supports mobility. However, it increases network traffic due to extensive use of
multicast messaging. Like Jini, dependencies on IP technologies causes network
dependencies.

3. SLP [Gut03] - The Service Location Protocol (SLP) was developed by the IETF
SvrLoc working group. It is a combination of Registry and non-Registry archi-
tecture. The User is called the User Agent, the Manager is the Service Agent
and the Registry is the Directory Agent. When a Registry exists, the Manager
registers its Service Description at the Registry and the User queries for services
matching its requirement. SLP provides filters that allows attribute and predicate
string search. When the Manager updates its Service Description, it re-registers
at the Registry. The User has to query the Registry periodically if it wants to
discover the update. When the Registry is unavailable, the User can send mul-
ticast queries to discover the Manager. The Manager also periodically refreshes
its registration by re-registering its data. If the Manager fails to refresh its regis-
tration on time, the Registry removes the data, and assumes that the Manager
is no longer available in the system. A typical implementation of SLP depends
on reliable TCP/IP. SLP provides basic service discovery functions, with limited
consistency maintenance support. Unlike Jini, the combination of of Registry and
non-Registry based architecture reduces single point of failure issues.



26 A TAXONOMY OF SERVICE DISCOVERY 2.7

4. Bluetooth SDP [Bra01] - Bluetooth was developed by the Bluetooth Special In-
terest Group, an industry consortium consisting of companies like Ericsson, Nokia
and IBM. It is meant for low power, short range (within 10m), wireless (ad-hoc)
radio system devices (PAN network) operating in the 2.4GHz ISM band. The
Bluetooth Service Discovery Protocol (SDP) depends on the underlying connec-
tivity, thus we first describe how devices establish their connectivity. Bluetooth
devices periodically sniff for nearby Bluetooth devices and form a personal area
network called piconets which has a maximum of 8 members. The member that
initiates communication acts as the master of the piconet. Additional devices are
supported by reusing addresses of a silenced existing member on a new member.
Groups of piconets communicating with each other are called scatternets. The
Bluetooth SDP [Blu01] is a non-Registry based architecture. The Manager runs
an SDP server, while the User runs an SDP client. Services are divided into
classes. Each service is represented by a service record. The User sends a query
for a particular service type, and receives a response from the Manager if it offers
a matching service. The User detects that the Manager is no longer available
when it does not receive a response to a request. The Bluetooth SDP has simple
basic functions, where there is no leasing, or subscription to receive updates. The
tight dependency on the underlying protocol layers makes the Bluetooth SDP
unsuitable for stand-alone deployment.

2.7.2 Large systems
Service discovery for large systems normally have a multiple Registry architecture
because it reduces network traffic, thus increasing scalability. Since large systems
are deployed over long distances, multiple, replicated Registries are available. To
support a large number of nodes, Registries can do load balancing, and reproduce
child Registries to help reduce load. To allow Registries to query and update each
other efficiently, Registries are arranged in a logical mesh or tree topology.

1. GSD [Cha02] -GSD is developed in University of Maryland. It is targeted
at ad-hoc networks, where service discovery is integrated with routing. GSD
classifies services according to several groups and hierarchies, expressed in DAML.
The protocol requires all nodes to behave as Registries. The Manager multicasts
group information along with the information of groups and services within its
own vicinity, within a limited number of hops. The neighbor nodes cache the
group and service information. A service query from the User is matched by the
neighbors against cached information, and replied if there is a cache hit. In case
of a cache miss, the query is forwarded based on the probability of finding the
requested group in their vicinity. The neighbor node caches the User’s address,
the query identifier and the previous hop address in a reverse-route table. The
reply to the query is forwarded back to the User by the neighbor nodes based
on their reverse-route tables. This protocol reduces network traffic by utilizing
selective forwarding and limiting the number of hops for messages to be forwarded.



2.7 STATE OF THE ART 27

However, by limiting the number of hops that service advertisements can travel,
fewer nodes are aware of the service existence. GSD provides limited consistency
maintenance by restricting the lifetime of advertisement messages.

2. Ninja SDS [Cze99] - The Ninja project by the University of California, Berkeley
developed the Service Discovery Service (SDS). SDS is a Registry architecture,
where services are registered by Managers and discovered by Users through que-
ries. The Registry in SDS is called the SDS server. For the purpose of scalability,
Registries are organized into multiple shared tree-like hierarchies, so that tasks
can be shared among several Registries. When a Registry is overloaded, it spawns
a nearby node as a new Registry, which then becomes a child of the overloaded
Registry. The new Registry is allocated a portion of the network extent, and thus,
a portion of the load. Security is also supported by SDS, where service discovery
functions are wrapped around steps to allow authentication, authorization and
data integrity. For service queries and Service Descriptions, SDS uses an XML-
based query and description language. SDS is implemented in Java and requires
the use of Secure Remote Method Invocation (Secure RMI) to perform secure
communication, hence it requires substantial resources.

3. INS/Twine [I.S01] - INS/Twine was developed at Massachusetts Institute of
Technology. Like SDS, The architecture is based on the Intentional Naming
System [AW99], where a number of Registries, called resolvers, map queries to
destination addresses, and also distribute service information. Unlike tree-like
Registries structures in SDS, INS/Twine Registries have a mesh-like topology,
where Registries are peers with each other. A Manager is simply referred to as
a resource. The Manager advertises its Service Description to the nearest Re-
gistry. INS/Twine is built on top of a distributed hash table (DHT), such as
Chord [Sto03]. The Registry extracts prefix subsequences of attributes and va-
lues in the Service Description, into strands. The Registry then computes hash
values for each of these strands, which constitutes numeric keys used to map re-
sources to resolvers. To avoid being overwhelmed with registrations, Registries in
INS/Twine use keying mechanisms to limit registrations. The service information
is stored redundantly in all Registries that correspond to the numeric keys. When
a User queries the nearest Registry, the Registry splits the query similar to how
the Service Description is split. The Registry then queries other Registries that
are identified by one of the longest strands. The query is further processed by the
Registry, which returns the matching service information.

4. Jxta [Gon01] - Jxta was developed by Sun Microsystems. It is a combination
of Registry and non-Registry based architecture. Registries in Jxta are known
as Rendezvous peers. Managers (simply known as peers) send multicast adver-
tisements to make their presence and services known to the network. Registries
that receive the advertisements cache the service information. A User can send



28 A TAXONOMY OF SERVICE DISCOVERY 2.8

multicast queries, and Managers and Registries with matching service information
respond to the queries. Each Manager periodically refreshes its service adverti-
sements. Users and Registries purge service information when the Manager fails
to refresh the advertisements at the expected time. When a service changes, the
Manager sends another advertisement (either immediately, or at the next periodic
refresh time) so that Users and Registries can detect the change. An additional
entity called the relay peer acts as name resolver to map a service to its destina-
tion address. The relay peer stores routing information and relays messages across
firewalls. In Jxta, Users, Managers and Registries can form groups, based on a cer-
tain criteria (such as location, service type, etc). An entity can only communicate
with members of the groups that it has joined. Unlike SDS and INS/Twine, Jxta
does not provide load-balancing techniques to unburden overloaded Registries. It
also provides limited consistency maintenance support.

2.8 Taxonomy of State of the Art

In this section, we first analyze how the state of the art service discovery
systems address the five operational aspects; system size (which influences the
choice of architecture), lossy environment, resource-constraints, heterogeneity and
security. We then proceed to analyze the differences in functionality.

2.8.1 Taxonomy of State of the Art Solutions to Operational Aspects
Figure 2.5 shows a summary of our analysis on the solutions provided by state
of the art systems for the operational design aspects. The shaded columns for
each system expose the aspects that the system considers, and the solutions. We
also show which system provides the most support for each design issue by the
number of shades for the issue across the systems.

For small sized, mobile PAN (less than ten nodes) the non-Registry architec-
ture (UPnP and Bluetooth SDP) is the most suitable. This is because the number
of nodes is small, and service discovery tasks will be accomplished faster, than
if a Registry is required to be setup, and maintained. For LAN (tens to several
hundred nodes), the Registry-based architecture would be more suitable, to help
conserve bandwidth. The Registry can either be statically deployed (Jini, SLP,
GSD), or dynamically elected (Jxta), depending on the degree of fault-tolerance
required. For large systems, scalability is the primary concern. Registries are sco-
ped according to location or services (SDS, Jxta), and arranged in a tree (SDS),
or mesh (GSD, Jxta, INS/Twine) topology to optimize query processing and con-
serve bandwidth.

State of the art systems provide fault-tolerance for a lossy environment by im-
plementing on-the-fly Registry setup (SDS), or multiple replicas of the Registry
(as can be done in Jini, SLP, GSD, INS/Twine) to provide redundancy in the face



2.8 TAXONOMY OF STATE OF THE ART 29

of single point of failure problems caused by mobile Registries. However, redun-
dancy increases design complexity and consumes additional resources. Registries
can also be monitored by other nodes for node crash failures (SDS, Jxta). The
non-Registry based architecture of UPnP is the most robust against crash failure
and message loss, because Users and Managers can hear each others’ multicast
queries and announcements directly. However, the tradeoffs are scalability and
conservation of resource consumption. A Registry-based architecture, with the
ability for nodes to multicast queries when the Registry disappears (SLP, GSD,
Jxta), increases robustness against message loss and crash failure, while also in-
creasing scalability and resource consumption. To provide reliable transmission,
TCP is used in Jini, SLP, and UPnP. None of the state of art protocols address
message corruption (assume lower protocol layers will address this problem), nor
do they detect and recover from Byzantine failures.

None of the presented systems makes a distinction among resource-lean and
resource-rich nodes at the functional level by partitioning service discovery tasks.
At the architectural level, it is implicitly understood that Registries have powerful
hardware resources. Service discovery for large systems provide load balancing
techniques so that Registries are not overloaded; SDS and INS/Twine allow over-
loaded Registries to spawn another to take over a portion of their tasks. For
conserving bandwidth, some systems use efficient replication and query proces-
sing such as by using DHTs (INS/Twine).

To integrate nodes into different types of connectivity (e.g. wired Ethernet
to wireless 802.11b), nodes are assumed to have the necessary interfaces to the
different networks, or have connectivity via access points. SDS and Jxta abstract
away underlying protocol stacks (transport layer and beyond), therefore providing
more flexibility for deployment over different types of connectivity and protocol
stacks. Service discovery functions in these systems are self-sufficient, with mi-
nimum network layer assumptions (multicast and unicast capabilities required).
Systems built for the ad-hoc networks (Bluetooth SDP and GSD) integrate rou-
ting knowledge with service discovery, and become more dependent on the network
stack. Some systems explicitly require a certain type of technology, such as TCP
and IP (Jini, UPnP, SLP and INS/Twine). INS/Twine also uses the integrated
INS as the underlying name mapping framework.

Most systems depend on higher layers in the protocol stack to provide au-
thentication, authorization, privacy and data integrity. Additional steps are
required in between service discovery functions. For example, once the Manager
discovers a Registry, it decrypts the message and verifies the signature in the mes-
sage to authenticate the Registry (as is possible in SLP, Jxta and SDS). These
are intermediate steps, before service registration. Users who discover the service
can only access the service if they are authorized by a capability manager (as
in SDS), by applying for group membership (possible in Jxta), or if allowed by
the Manager (can be performed by security applications in all systems). The ser-
vice discovery systems discussed here do not support detection and blacklisting
of an authenticated and authorized entity that has turned malicious. One other



30 A TAXONOMY OF SERVICE DISCOVERY 2.8

protocol that does reputation-based service discovery to support this problem is
SuperstringRep [Wis05]. Security measures consume substantial resources, in-
crease complexity of the system extensively, and reduce self-configuration of the
system. Due to these reasons, a full-fledged secure service discovery system is yet
to be deployed successfully.



2.8 TAXONOMY OF STATE OF THE ART 31

 Ap
pl

: T
he

 so
lu

tio
n c

an
 be

 pr
ov

id
ed

 by
 th

e a
pp

lic
ati

on
 la

ye
r 

LM
: T

he
 un

de
rly

in
g L

in
k M

an
ag

er
 in

 th
e B

lu
eto

ot
h p

ro
to

co
l s

tac
k p

ro
vi

de
s a

ut
he

nt
ica

tio
n a

nd
 en

cry
pt

io
n  

  
RM

I/J
VM

: J
in

i i
s s

up
po

rte
d b

y t
he

 se
cu

rit
y f

ea
tu

re
s i

n J
VM

 an
d R

M
I/T

CP
: R

eli
ab

le 
co

m
mu

ni
ca

tio
n i

s p
ro

vi
de

d u
sin

g T
CP

 
TC

P/
IP

, B
lu

eto
ot

h, 
Ro

ut
in

g, 
IN

S/
IP

: T
he

 sy
ste

m 
de

pe
nd

s o
n t

he
 li

ste
d u

nd
er

ly
ing

 pr
ot

oc
ol

 st
ac

k 

Op
era

tio
na

l I
ss

ue
s 

St
ate

 of
 th

e a
rt 

so
lu

tio
ns

 to
 op

era
tio

na
l i

ss
ue

s 

Iss
ue

 
Sp

ec
ifi

cs
 

De
sig

n S
olu

tio
ns

 

Jin
i 

SL
P 

UP
nP

 
Bl

ue
to

oth
 

SD
P 

GS
D 

Jx
ta 

SD
S 

IN
S/

 
Tw

in
e 

M
es

he
d t

op
olo

gy
 

 
 

 
 

 
 

 
 

No
n-

Re
gi

str
y 

ar
ch

ite
ctu

re
 

Cl
us

ter
ed

 to
po

log
y 

 
 

 
 

 
 

 
 

Si
ng

le 
Re

gi
str

y 
 

 
 

 
 

 
 

 

1 
Sm

all
 sy

ste
ms

  
(P

AN
 / 

LA
N)

  
Re

gi
str

y 
ar

ch
ite

ctu
re

 
Un

co
nn

ec
ted

 to
po

log
y 

 
 

 
 

 
 

 
 

M
es

he
d R

eg
ist

ry
 to

po
log

y 
 

 
 

 
 

 
 

 
Tr

ee
-b

as
ed

 R
eg

ist
ry

 to
po

log
y 

 
 

 
 

 
 

 
 

Sy
ste

m 
siz

e 

2 
La

rg
e s

ys
tem

s  
(M

AN
 / W

AN
)  

M
ul

tip
le 

Re
gi

str
y  

ar
ch

ite
ctu

re
 

Cl
us

ter
ed

  R
eg

ist
ry

  t
op

ol
og

y 
 

 
 

 
 

 
 

 
Re

tra
ns

mi
ss

io
ns

 an
d a

ck
no

wl
ed

ge
me

nt
s 

TC
P 

TC
P 

TC
P 

 
 

 
 

 
M

ul
tic

as
t q

ue
rie

s 
 

 
 

 
 

 
 

 
Pe

rio
di

c R
eg

ist
ry

 an
no

un
ce

me
nt

s 
 

 
 

 
 

 
 

 
Pe

rio
di

c s
er

vi
ce

 ad
ve

rti
se

me
nt

 
 

 
 

 
 

 
 

 
Re

du
nd

an
t R

eg
ist

ry
 re

pl
ica

s 
 

 
 

 
 

 
 

 
Pr

im
ar

y-
ba

se
d r

ec
ov

er
y p

ro
toc

ol
s 

 
 

 
 

 
 

 
 

Ca
ch

e a
lte

rn
ate

 se
rv

ice
s 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Sh
or

t l
ea

se
/an

no
un

ce
me

nt
 ex

pir
y p

er
iod

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 

Lo
ss

y 
en

vir
on

me
nt

 
3 

Co
mm

un
ica

tio
n a

nd
 

no
de

 fa
ilu

re
 

Bl
ac

kl
ist

 un
rel

iab
le 

no
de

s 
 

 
 

 
 

 
 

 
Re

so
ur

ce
-aw

are
 fu

nc
tio

ns
 

 
 

 
 

 
 

 
 

4 
Re

so
ur

ce
-le

an
 no

de
s 

Li
gh

tw
eig

ht
 pr

ot
oc

ol
 st

ac
k 

 
 

 
 

 
 

 
 

In
teg

ra
te 

ro
ut

in
g a

nd
 se

rv
ice

 di
sc

ov
er

y 
 

 
 

 
 

 
 

 
Ef

fic
ien

t q
ue

ry
 pr

oc
es

sin
g 

 
 

 
 

 
 

 
 

Re
so

ur
ce

 
co

ns
tra

in
ts 

5 
Ba

nd
wi

dth
 co

ns
tra

in
t 

Lo
ad

 ba
lan

cin
g t

ec
hn

iqu
es

 
 

 
 

 
 

 
 

 
Re

mo
ve

 se
ns

iti
ve

 in
fo

rm
ati

on
 fr

om
 S

D 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Au

the
nt

ica
tio

n 
Ap

pl
 

Ap
pl 

Ap
pl

 
LM

 
Ap

pl
 

Ap
pl

 
 

Ap
pl

 
Ac

ce
ss

 co
nt

ro
l 

 
 

 
LM

 
 

 
 

 
En

cr
yp

ted
 co

mm
un

ica
tio

n 
Ap

pl
 

Ap
pl

 
Ap

pl
 

LM
 

Ap
pl

 
 

 
Ap

pl
 

Se
cu

rit
y 

6 
Co

nf
id

en
tia

lit
y, 

in
teg

rit
y 

an
d a

va
ila

bi
lit

y 
 

Bl
ac

kl
ist

 m
ali

cio
us

 no
de

s 
 

 
 

 
 

 
 

 
Sy

ste
m 

he
ter

og
en

eit
y 

7 
He

ter
og

en
eo

us
  p

ro
to

co
l 

sta
ck

 
Ab

str
ac

t a
wa

y u
nd

erl
yin

g p
ro

to
co

l s
tac

ks
 

TC
P/

IP
 

TC
P/

IP
 

TC
P/

IP
 

Bl
ue

to
oth

 
Ro

ut
ing

 
 

 
IN

S/
IP

 

Op
era

tio
na

l i
ssu

es
 th

at 
ar

e g
ive

n p
rio

rit
y b

y t
he

 sy
ste

m 
1,3

 
1,3

 
1,3

 
1,6

 
2,3

,4 
1,2

, 
3,6

,7 
2,3

, 
6,7

 
2,3

,5 

F
ig

u
re

2
.5

:
T
a
xo

n
o
m

y
o
f
st

a
te

o
f
th

e
a
rt

so
lu

ti
o
n
s

to
o
pe

ra
ti
o
n
a
l
a
sp

ec
ts

.
S
h
a
d
ed

se
rv

ic
e

d
is

co
ve

ry
sy

st
em

s
su

p
po

rt
th

e
p
ro

po
se

d
so

lu
ti
o
n
s.

A
p
p
l
m

ea
n
s

th
e

so
lu

ti
o
n

to
th

e
o
pe

ra
ti
o
n
a
l
is

su
e

is
su

p
po

rt
ed

by
th

e
a
p
p
li
ca

ti
o
n

la
ye

r.
S
o
m

e
sy

st
em

s
d
ep

en
d

o
n

so
lu

ti
o
n
s

p
ro

vi
d
ed

by
th

e
u
n
d
er

ly
in

g
p
ro

to
co

l
st

a
ck

s,
su

ch
a
s

T
C

P
,
IP

,
B
lu

et
oo

th
a
n
d

a
d
-h

oc
ro

u
ti
n
g

p
ro

to
co

ls
.



32 A TAXONOMY OF SERVICE DISCOVERY 2.8

 * J
in

i o
nl

y d
oe

s a
cti

ve
 di

sc
ov

er
y w

he
n t

he
 no

de
 in

iti
ali

ze
s (

po
we

rs 
on

) 
**

 B
lu

eto
ot

h S
DP

 de
pe

nd
s o

n t
he

 un
de

rly
in

g B
lu

eto
ot

h n
etw

or
k t

o d
ete

ct 
ne

ig
hb

or
in

g n
od

es
, s

o t
ha

t i
t c

an
 qu

er
y t

hr
ou

gh
 un

ica
st 

N/
A:

 th
e m

eth
od

 is
 no

t r
ele

va
nt

 fo
r t

he
 no

n-
Re

gi
str

y a
rc

hi
tec

tu
re

 
Ap

pl
: t

he
 m

eth
od

 ca
n b

e s
up

po
rte

d b
y t

he
 ap

pl
ica

tio
n l

ay
er

, b
y u

sin
g t

he
 ha

nd
les

 pr
ov

id
ed

 by
 th

e s
er

vi
ce

 di
sc

ov
er

y p
ro

to
co

l  
 

St
ate

 of
 th

e a
rt 

fu
nc

tio
na

l i
m

pl
em

en
tat

io
n 

Se
rv

ice
 D

isc
ov

er
y F

un
cti

on
s 

M
eth

od
s 

Jin
i 

SL
P 

UP
nP

 
Bl

ue
to

ot
h 

SD
P 

GS
D 

Jx
ta 

SD
S 

IN
S/

 
Tw

in
e 

Re
gi

str
y e

lec
tio

n 
 

 
N/

A 
N/

A 
 

 
 

 
Re

gi
str

y  
au

to
-c

on
fig

ur
ati

on
 

Re
gi

str
y r

ep
ro

du
cti

on
 

 
 

N/
A 

N/
A 

 
 

 
 

Pa
ss

iv
e d

isc
ov

er
y  

 
 

 
N/

A 
 

 
 

 

Co
nf

ig
ur

ati
on

 
Di

sc
ov

er
y 

Re
gi

str
y o

r c
lu

ste
r 

di
sc

ov
er

y 
Ac

tiv
e d

isc
ov

er
y  

* 
 

N/
A 

N/
A 

 
 

 
 

So
lic

ite
d r

eg
ist

ra
tio

n  
 

 
N/

A 
N/

A 
 

 
 

 
Re

gi
str

ati
on

 
 

Un
so

lic
ite

d r
eg

ist
ra

tio
n  

 
 

N/
A 

N/
A 

 
 

 
 

Un
ica

st 
qu

er
y  

 
 

 
**

 
 

 
 

 
Qu

er
y 

 
M

ul
tic

as
t q

ue
ry

 
 

 
 

 
 

 
 

 
Se

rv
ice

 no
tif

ica
tio

n b
y R

eg
ist

ry
 

 
 

N/
A 

N/
A 

 
 

 
 

SD
 D

isc
ov

er
y 

Se
rv

ice
 no

tif
ica

tio
n 

 
M

ul
tic

as
t s

er
vi

ce
 ad

ve
rti

se
m

en
t 

 
 

 
 

 
 

 
 

Le
as

in
g e

xp
iry

 
 

 
 

 
 

 
 

 
 C

on
fig

ur
ati

on
 pu

rg
e 

Ad
ve

rti
se

m
en

t T
TL

 ex
pi

ry
 

 
 

 
 

 
 

 
 

Po
ll 

fo
r u

pd
ate

s (
by

 th
e U

se
r;)

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
Ap

pl
 

Ap
pl

 
No

tif
ica

tio
n o

f u
pd

ate
s (

by
 th

e M
an

ag
er

 / 
Re

gi
str

y)
 

 
 

 
 

 
 

 
 

Co
nf

ig
ur

ati
on

 
Up

da
te 

Co
ns

ist
en

cy
 

m
ain

ten
an

ce
 

Up
da

te 
am

on
g R

eg
ist

rie
s  

 
 

N/
A 

N/
A 

 
 

 
 

F
ig

u
re

2
.6

:
T
a
xo

n
o
m

y
o
f
st

a
te

o
f
th

e
a
rt

fu
n
ct

io
n
a
l
im

p
le

m
en

ta
ti
o
n
.

T
h
e

m
o
re

sh
a
d
es

a
fu

n
ct

io
n

h
a
s,

th
e

h
ig

h
er

th
e

eff
ec

ti
ve

n
es

s
o
f
th

e
fu

n
ct

io
n
.

H
o
w
ev

er
,
th

e
ch

o
ic

e
o
f
m

et
h
od

im
pa

ct
s

th
e

effi
ci

en
cy

,
re

sp
o
n
si

ve
n
es

s
a
n
d

re
so

u
rc

e
co

n
su

m
p
ti
o
n
.



2.9 TAXONOMY OF STATE OF THE ART 33

2.8.2 Taxonomy of service discovery functions and methods

Once architectural decisions are made on how to address the operational design
aspects, the service discovery functions are implemented. Figure 2.6 summarizes
the functional capabilities of state of the art systems. In Chapter 5, we show
that the functional differences impact system performance such as responsiveness,
effectiveness, efficiency and resource consumption.

For the Configuration Discovery function, the Registry reproduction method
in INS/Twine and SDS requires the first set of Registries in both systems to be
manually deployed by a system administrator. None of the described systems use
a more dynamic election method to establish the initial set of Registries. For
discovering Registries and cluster members, systems that do periodic passive and
active discovery (SLP, GSD, INS/Twine and SDS) have higher responsiveness
than systems that implement only one of the methods. Passive and active disco-
very are especially useful to allow the system to recover from failures that cause
network partitioning.

For the Service Registration function, no systems are built with solicited re-
gistration, which would have allowed the Registry to recover speedily the purged
information of a Manager, after communication failures. The state of the art
systems allow only unsolicited registration, after a Registry is discovered.

For the SD Discovery function, UPnP and Jxta allow both multicast queries
and multicast service advertisements. The combination of these two methods
gives the highest probability for successfully discovering a service, even after mes-
sage loss and temporary node failures (e.g. mobile nodes getting temporarily
disconnected). Among Registry systems, SLP allows multicast queries and adver-
tisements when the Registry is not discovered. This method conserves bandwidth
more efficiently. In Jini, the Registry can notify the Users of newly registered ser-
vices matching the requirements of the Users. This method increases the chances
of discovering new services in Registry-based systems.

For the Configuration Update function, Jini uses leasing for Configuration
Purge, where the Registry can request Managers to lengthen or shorten their
lease period, according to the Registry’s processing capability. The rest of the
systems require Users and Registries to monitor the advertisement TTL of Ma-
nagers to detect defunct services. Leasing is more efficient in terms of bandwidth
and resource utilization, compared to periodic multicast advertisements. For Con-
sistency Maintenance, the state of the art systems provide handles to allow the
application on the User to query the Registry or Manager periodically for up-
dates. Only Jini and UPnP allow the Registry or the Manager to update the
User directly on changes in the SD. In large systems (Jxta, INS/Twine and SDS),
Registries achieve consistency by updating each other on changes in the cached
SDs. Unlike small systems, updates are not propagated each time an SD chan-
ges, but in bulk (when a threshold is reached), thus providing weaker consistency
maintenance (but necessary to conserve bandwidth).



34 A TAXONOMY OF SERVICE DISCOVERY 2.9

2.9 Discussion and Conclusion

We have analyzed the field of service discovery by first characterizing service
discovery as a third generation name discovery system that solves the limitations
of legacy naming systems for pervasive computing. We have described the different
architectures and the main functions of service discovery that allows services to
be discovered, and changes in service availability and attributes to be detected.
We have showed how a small number of models of distributed systems can be
used as a basis for the implementation of the service discovery functions. We
have classified the main operational design aspects for service discovery, and have
compared the state of the art solutions to these aspects.

We now focus on providing a design which satisfies the 3Rs in Chapter 1;
a reliable, unattended small scale system, which consists of heterogeneous nodes
with different resource-constraints. Towards satisfying these requirements, we
choose to build a Registry-based system. Registry-based systems are vulnerable
to single point of failure issues. However, when resource-constraints are taken
into consideration, it is necessary to implement a Registry-based architecture so
that resource-lean nodes can participate in service discovery using the help of the
Registry.

Our analysis reveals several areas for improvements for a new Registry-based
service discovery system for the home:

1. Reliability. State of the art systems either depend on underlying relia-
ble transmission protocols such as TCP for retransmissions and acknow-
ledgments to support temporary communication and node failures, or have
no provisions for such failures. Therefore, a new service discovery system
should incorporate retransmissions and acknowledgments for critical messa-
ges, should a reliable transport layer not be available in all devices.

Existing Registry systems are vulnerable to single point of failure issues
due to Registry crashes. A new service discovery system should imple-
ment Registry election to allow automatic Registry setup, and incorporate
primary-based recovery protocols [Tan02b] such as monitoring and backing
up the Registry to increase fault-tolerance against Registry crashes. This
solution also eliminates the need for Registry replicas in small systems, and
is therefore appropriate for our home context.

2. Resource constraints. Cost of devices is a major concern for the home en-
vironment. Since cost increases with resource consumption, we require a
resource-aware service discovery system. State of the art systems typically
assume nodes in the system have homogeneous resources. The systems are
also not suitable for resource-lean nodes, because of heavyweight proto-
col stacks and implementation (e.g. TCP, IP, JVM, XML). Therefore, we
should partition service discovery tasks across nodes based on their resource



2.9 DISCUSSION AND CONCLUSION 35

constraints. Resource-lean Users and Managers need only implement light-
weight methods for each service discovery function, while more powerful
Users and Managers can support the weaker nodes by implementing more
sophisticated methods. Registries are only implemented in the powerful
nodes.

3. Heterogeneity. Most service discovery systems depend on a specific set of
underlying protocol stacks such as TCP, IP or certain routing protocols. We
should ensure a more flexible implementation across heterogenous nodes by
abstracting away the underlying protocol stacks. Instead, our system should
only need unicast and multicast capabilities from the network, with a set of
specifications for the two communication models. For example, unicast is
defined as “point-to-point communication for nodes at the opposite edges
of the system”, while multicast is defined as “one-to-many communication
for nodes within the system”.

We conclude by stating that the behavior of a service discovery system is hea-
vily influenced by the operational aspects that the system gives priority to. In
the home environment, the size of the system is small. The system should also be
robust against failures, and support resource-constrained and heterogeneous de-
vices. Therefore, our system described in Chapter 4 implements a resource-aware
Registry-based architecture, uses Registry election and primary-based recovery
protocols to eliminate single point of failure issues, and is portable over heteroge-
neous devices and networks.

In the next chapter, we state that it is not sufficient for a service discovery
system for the home to simply provide design solutions to the operational aspects.
The service discovery system should also provide some guarantees of correct be-
havior, based on a set of principles.





Chapter 3
Functional Principles of Service
Discovery for Small Systems

An expert is a person who has made all the mistakes
that can be made in a very narrow field.

General Omar Bradley

3.1 Introduction
As explained in Chapter 2, service discovery systems that aim to be self-configuring
should achieve the following objectives:

O1: Discover services that match requirements

O2: Detect changes in service availability and attributes

The dynamic nature of the environment of a service discovery system requires
the objectives to hold true, even when nodes appear and disappear at random.
In some cases we can rely on human intervention to maintain the services, but
in the home environment, this is impossible. Therefore, service discovery systems
for the home environment are expected to recover from unexpected failures, and
continue to function correctly.

This chapter states the functional principles of service discovery for small scale,
unattended systems. We also identify the essential recovery behaviors in service
discovery that help satisfy the principles when the system faces communication

37



38 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.2

and node failures. The recovery rules are essential for improving reliability in
service discovery (one of the 3Rs from Chapter 1). A reliable service discovery
system is effective, because it increases the chances of satisfying O1 and O2.
Effectiveness is a required criteria in the Research Question in Chapter 1.

Contributions: The contributions of this chapter to the field of service disco-
very are:

1. Pioneering work for specifying the functional principles of service discovery
for small systems. We present seven Service Discovery Principles that state
the fundamental behavior of service discovery for small, unattended systems.

2. Providing a detailed analysis of consistency maintenance in service disco-
very, and a novel classification of consistency maintenance recovery rules
according to common failure scenarios.

The chapter is organized into two parts; In Section 3.2, we model the ser-
vice discovery environment for a small-scale system, and introduce seven Service
Discovery Principles1 .

In Section 3.3, we introduce recovery rules2 that specify how service discovery
systems can recover from failures, and even after failure, eventually satisfy the
Service Discovery Principles. Here, we focus on how to satisfy the principles for
consistency maintenance. Consistency maintenance allows Users to receive upda-
tes on service attributes. Our analysis reveals that for Users to regain consistency
in the face of failures, the correct behaviors of all service discovery functions are
required. In the home environment, it is the task of the service discovery sys-
tem to maintain the integrity of cached data, so that applications that rely on
the information in the service description (SD) do not behave incorrectly due
to inconsistency. Furthermore, guarantees on consistency maintenance in service
discovery safeguards the system from services that do not provide their own con-
sistency maintenance at the application layer when the service attributes change.

We use the term “failures” for all transient failures that temporarily disable
nodes from communicating with each other, such as message loss, link failure and
temporary node crashes due to power or hardware failure. We do not address
persistent failures such as unreliable nodes that require physical removal, or se-
vere network failures that require network reset, because human intervention is
necessary in such cases.

1This section has been published in Proceedings of the 30th Annual IEEE Conference on
Local Computer Networks (LCN 2005), Sydney, Australia, pp. 209-217, IEEE Computer Society
Press.

2This section has been published in Proceedings of the 20th IEEE Int. Parallel & Distributed
Processing Symposium (IPDPS 2006), Rhodos Island, Greece, page to appear, IEEE Computer
Society Press.



3.2 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 39

3.2 Functional Principles of Service Discovery

A system is flawed if a User is never able to discover an available Mana-
ger whose services match the User’s requirements. To make the notion of correct
behavior precise, we define Service Discovery Principles. These fundamental prin-
ciples also define the nature and constraints of service discovery. Systems that
adhere to the principles provide guarantees on their behaviors.

3.2.1 Related Work
The only other work done to develop principles for service discovery is the work
on Service Guarantees from Dabrowski, Mills and Quirolgico [Dab05] from the US
National Institute of Standards and Technology (NIST), which proposes general
guarantees that service discovery protocols should satisfy. The work on the Service
Discovery Principles was done in parallel with the development of the Service
Guarantees at NIST, and is the result of joint research. The Service Guarantees
do not specify the system size nor the environment that they apply to. The Service
Discovery Principles refine and simplify the Service Guarantees for small systems,
focused on the home environment. To our knowledge, none of the existing state
of the art systems offer guarantees on functional behaviors.

3.2.2 The Service Discovery Environment
If the environment of a service discovery system causes it to fail, we should like
the system to recover from failures.

Below we provide a formal description of a system.

1. System: A system consists of a set of entities with attributes (e ∈)E, a set
of services (s ∈)S. The attributes of the entities, described below, evolve
over time (t ∈)Time. Based on the attributes, the entities are divided into
three (not necessarily pairwise disjoint) sets (u ∈)U for Users, (m ∈)M for
Managers, and (c ∈)C for Registries.

2. Entity attributes: Each entity, e has the following attributes, which are
subject to change over time:

� C(e) ⊆ E is the set of Registries discovered by e. An entity is called
a Registry, i.e. e ∈ C, if it has discovered itself in the role of Registry,
e ∈ C(e).

� OfferedSD(e) ⊆ S is the set of services, offered by e. An entity is called
a Manager, i.e. e ∈ M, if it offers at least one service, OfferedSD(e) 6= ∅.

� Requirement(e) ⊆ S is the set of services required by entity e. An
entity is called a User, i.e. e ∈ U, if it requires at least one service,
Requirement(e) 6= ∅.



40 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.2

� DiscoveredSD(e, e′) ⊆ S is the set of services discovered by e at entity
e′. This attribute is typically only used when e is a User and e′ is a
Manager. We put DiscoveredSD(u) :=

⋃
m∈M

DiscoveredSD(u,m)

for the set of all services discovered by a User, u at any Manager, m.

� RegisteredSD(e) ⊆ S is the set of registered services in e. This attribute
is only used for a Registry.

There are several protocol-dependent parameters used in the Service Discovery
Principles:

1. Connectivity condition: Conn(e, e′) : The service discovery protocol is
responsible for providing the definition of Connectivity. An example is “if
a message is transmitted from either e to e′, or vice versa, the message is
received.” The Connectivity condition is not restricted to valid communica-
tion paths. It can also be defined by an application, for example, a security
application that detects a malicious entity, and indicates to the service dis-
covery protocol that the node is not available for any further operations.

2. Disconnect condition: DisConn(e, e′) : ¬Conn(e, e′) for “sufficiently long”,
where “sufficiently long” is a protocol-dependent parameter. The definition
of “sufficiently long” includes the Connectivity definition and the period
communication did not occur. Examples are the limit of retransmissions or
the time period for waiting for acknowledgements.

3. Global Connectivity, GC: The condition is satisfied if all entities are
connected.
GC : ∀e1, e2 ∈ E = Conn(e1, e2)

4. Number of Registries, N: the desired number of Registries in the system.

5. Required Registries or cluster members, G(e)(⊆ E): the Registries or
cluster members required by e. For example, an entity may not be interested
in knowing all Registries, but only those of a certain type, i.e. those which
satisfy its “Registry requirements”.

6. Registry election, Rank: a function for electing the Registries in the sys-
tem, where the set C has highestRank if
¬(∃e′ /∈ C : Rank(e′) > min{Rank(e) | e ∈ C})

3.2.3 Service Discovery Principles
We use Linear Temporal Logic (LTL) [Hut00] to define the Service Discovery
Principles. This is essentially positional logic with temporal operators such as �
(always) or ♦ (eventually). As shown in Figure 3.1(a), the recovery of a service
discovery system is defined as the response pattern, �(p′ → ♦p), where p′ is the



3.2 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 41

state of Connectivity, Global Connectivity or Disconnect, and p is the response
of the service discovery system toward satisfying a Service Discovery Principle.

The Service Discovery Principles define the precise goals of the service dis-
covery functions described in Chapter 2. Each function must perform correctly,
and recover from failures, as shown in Figure 3.1(b). There are two states in
a service discovery function. When there are no failures, the function performs
correctly and is in the ideal state. When failures occur, the function may behave
incorrectly, but has to recover from failures and leave the non-ideal state when
failure ends.

Configuration
Discovery

Consistency
MaintenanceRegistration

SD Discovery

Configuration
PurgeOfferedSD(m) Update(m)

Update(m)
Requirement(u)

Disconnect(m,uc)

Disconnect(u,mc)

Disconnect(m,c)

Disconnect(m,uc)

MatchingSD(c,u)

Disconnect(m,uc)

DiscoveredSD(u)=0 or
Requirement(u)’

start

OfferedSD(m)’ Update(m)’E=1

p' p

Ideal Non-
ideal

failure
recovery

failure
no failure

failure

(a) Response pattern for service discovery,
(p’      p)

(b) States of a service discovery function,

Figure 3.1: Service discovery system states. (a) p′ is the state of Connectivity, Global
Connectivity or Disconnect, and p is the response of the service discovery system to
satisfy a Service Discovery Principle. (b) The ideal state for a function has no failure,
and the function performs correctly. In the non-ideal state, the function may perform
incorrectly. But when the failure ends, the service discovery function should eventually
recover from failures and return to the ideal state.

We need some auxiliary definitions before giving the Service Discovery Prin-
ciples.

1. The operations “♦⊆”, “♦⊇” and “♦⊃⊂”
a ♦⊆ b holds at time t0 when a at time t0 is a subset of b at some future
time t1 where t1 ≥ t0 (in LTL, the future includes the present). Similarly,
for the symbols “♦⊇” and “♦⊃⊂” where a ⊃⊂ b denotes that the two sets
are disjoint (a ∩ b = ∅).

2. ServiceSearch(u, c) states that a User, u is looking for a specific service from
a Registry, c

3. MatchingSD(c, u) :=
RegisteredSD(c) ∩ Requirement(u)

is the set of services registered at the Registry, c which match the require-
ments of User, u.

4. UpdateSD(m) :=
states that the OfferedSD(m) of Manager, m has changed.

5. ServiceFound(c, u) :=
MatchingSD(c, u) ♦⊆ DiscoveredSD(u)

states that the matching services at a Registry c are discovered by the User u.



42 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.2

u at time t4

OfferedSD(m)

m at time t1

c at time t2

Requirement(u)

u at time t2

ServiceSearch(u,c)

Registration(m,c)

c at time t3

Require-
ment(u)

Matching
SD(c,u)

ServiceFound(c,u)

Require-
ment(u)

Discovered
SD(u)

Time: t1< t2 < t3 <t4

Registered
SD(c)

Registered
SD(c)

Registered
SD(c,m)

Registered
SD(c,m)

Figure 3.2: System flow and relations between sets during Registration and Service
Discovery. Registration, ServiceSearch and ServiceFound are shown as messages sent
between entities. A service is registered by the Manager at time t1, then discovered by
the Registry at t2, and User searches for the service at or before t2. The Registry processes
the request at t3, where it finds matching services for the User. The User discovers the
service at t4.

OfferedSD(m)

m at time t5c at time t5

PurgeService(m,c)
c at time t6

Registered
SD(c,m)

Registered
SD(c)

Time:  t5 < t6 <t7

Discovered
SD(u)

Discovered
SD(u,m)

u at time t7

PurgeService(m,u)’

Registered
SD(c,m) Registered

SD(c)

Figure 3.3: System flow and relations between sets during Configuration Purge. A
service is purged by the Manager at t5, then the Registry is notified at t6, which then
purges the registration. The Registry notifies the User at t7, and the User purges the
service from its DiscoveredSD cache.



3.2 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 43

6. Registration(m, c) :=
OfferedSD(m) ♦⊆ RegisteredSD(c)

states that all services of Manager, m are registered at Registry, c.

7. PurgeService(m, u) :=
OfferedSD(m) ♦⊃⊂ DiscoveredSD(u)

states that the services of Manager, m are eventually purged from the dis-
covered services of User, u.
PurgeService(m, c) :=

OfferedSD(m) ♦⊃⊂ RegisteredSD(c)
similarly states that the services of Manager m are eventually purged from
the registered services of Registry, c. If an entity is both a Registry and a
User then both properties must hold.

8. Uptodate(u,m) :=
OfferedSD(m) ∩ Requirement(u) ♦⊆ DiscoveredSD(u,m) ∧
OfferedSD(m) ♦⊇ DiscoveredSD(u,m)

states that User u will find new services at Manager m and remove services
that are no longer available at m.

Configuration 
Discovery

Consistency 
MaintenanceRegistration

SD Discovery

Configuration 
PurgeOfferedSD(m) UpdateSD(m)

UpdateSD(m)

Requirement(u)

DisConn(e,e’)

DisConn(e,e’)

DisConn(e,e’)

DisConn(e,e’)

MatchingSD(c,u)

DisConn(e,e’)

|DiscoveredSD(u,m)|=0 
Requirement(u)

start

OfferedSD(m) UpdateSD(m)|E|<2

Conn(e,e’)

Figure 3.4: Service discovery system life cycle. When a system consists of more than
one entity, Configuration Discovery is performed, followed by Registration or SD Dis-
covery. Registration is triggered when there exists a Manager with OfferedSD(m). SD
Discovery is triggered when there exits a User with Requirement(u), or if the Registry
has MatchingSD(c, u). SD Discovery is done every time there is a new requirement or as
long as the User has not discovered the required service, where |DiscoveredSD(u, m)| = 0.
When UpdateSD(m) occurs in the Manager (SD changes), Consistency Maintenance is
performed. Configuration Purge occurs every time entities face DisConn(e, e′) due to
failures. When failures end, and Conn(e, e′) is restored, the cycle is restarted.

Figures 3.2 and 3.3 provide scenarios for a Registry-based system, where the
relationship between entities, and the sets are explained, as time progresses. In



44 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.2

Figure 3.2, ServiceSearch is the message providing the requirements of the User to
the Registry, while in Figure 3.3, PurgeService and PurgeService′ are the messages
that notify the Registry and User respectively of a defunct service.

We summarize the general life cycle of a service discovery system in Figure
3.4. We show that transitions between functions are triggered by the appea-
rance of services, OfferedSD(m), requirements, Requirement(u), service changes,
UpdateSD(m) and conditions DisConn(e, e′) and Conn(e, e′).

With the system and basic properties in place we are ready to give the 7
Service Discovery Principles.

(P1) Registry Setup Principle
When there is global connectivity, N Registries of the highest rank are se-
lected in the system.

�(GC → ♦((|C| = N) ∧ highestRank))
Assume all entities have the same rank if no ranking function is used.

(P2) Configuration Discovery Principle
An entity discovers all available Registries or cluster members in the system
that it is interested in.

∀e : �(C(e) ⊆ G(e) ∧
∀c ∈ C ∩ G(e) : Conn(c, e) → ♦c ∈ C(e))

(P3) Registration Principle
A Manager registers its service description at each Registry it discovers.

∀m,∀c ∈ C(m) :
�(Conn(m, c) → Registration(m, c))

(P4) SD Discovery Principle
A User discovers the service descriptions that match its requirements di-
rectly from the Manager, or from a Registry.

∀u, e : �(Conn(e, u) → ServiceFound(e, u))

(P5) Configuration Purge Principle
A User or Registry purges the services of a Manager that has become dis-
connected.

∀m,∀e ∈ U ∪ C :
�(DisConn(m, e) → PurgeService(m, e))

(P6) 2-Party Consistency Maintenance Principle
A User remains consistent with a Manager when its services change. This
principle applies to consistency maintenance between the User and the Ma-
nager, hence the term “2-party”.

∀m, u : �(Conn(u,m) → Uptodate(u,m))



3.3 FAILURE RECOVERY RULES DURING CONSISTENCY MAINTENANCE 45

(P7) 3-Party Consistency Maintenance Principle
A User remains consistent with a Manager when its services change, through
the Registry. This principle applies to consistency maintenance between the
User, the Registry, and the Manager, hence the term “3-party”.

∀c ∈ C(m) : �((Conn(c,m) ∧ ♦Conn(u, c)) → Uptodate(u,m))

Although the Service Discovery Principles are tailored for small systems, it is
possible to extend the principles to large systems:

� Configuration Discovery Principle: A Registry may need to discover other
relevant Registries, based on the type of topology. In a meshed Registry to-
pology, Registries need to discover each other for forwarding queries, while
in clustered Registry topology, Registries need to discover the relevant clus-
ter members. The Configuration Discovery Principle can be directly applied
in such cases where e is the Registry that has a set of requirement for dis-
covering peer Registries.

� 2-party Consistency Maintenance Principle: A Registry replica requires
fresh service information from its parent or peer when there is indication
that its cache is inconsistent (e.g. reaches maximum cache misses). In such
cases, the Registry requiring the update follows the behavior of the User, u
and the Registry providing the update behaves as the Manager, m in the
2-party Consistency Maintenance Principle.

How well a system delivers the Service Discovery Principles can be measured
from the effectiveness of the Consistency Maintenance function, when the system
faces communication and node failures. Users cache a discovered SD, and ultima-
tely require consistency with the Manager when the SD changes, thus satisfying
the Consistency Maintenance Principles (P6 and P7). When faced with failures,
Users become inconsistent with the Manager, and need to implement some fall-
back mechanisms to regain consistency. We call the set of fallback mechanisms
recovery rules. If failures occur for a long and uninterrupted period of time, nodes
are assumed to have crashed, and entities will purge the cached data of the non-
communicating entity (satisfying P5). The recovery rules facilitate rediscovery of
the purged entity (satisfying P1, P2, P3, and P4), so that Users can regain con-
sistency. In the next part of this chapter, we identify and classify several recovery
rules, based on the failure scenario.

3.3 Failure Recovery Rules During Consistency Maintenance

Users typically cache the discovered SD to reduce the access time to the ser-
vice, and reduce bandwidth usage (by avoiding repeated queries to rediscover the



46 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.3

service). Caching requires consistency maintenance so that the User and the Re-
gistry keep a consistent view of the service. Polling for updates (pull model),
and notification by the Manager when the service changes (push model) are two
consistency maintenance methods in service discovery. However, communication
and node failures may cause the consistency maintenance methods to fail to up-
date the Users. We find that communication and node failures create a number
of failure scenarios. How well a service discovery system performs depends on the
type of recovery rule that the system adopts when dealing with each failure sce-
nario. We classify consistency maintenance recovery rules according to the failure
scenarios, and propose rules that improve performance, and satisfy the Service
Discovery Principles.

3.3.1 Related Work

While consistency maintenance has been studied extensively in conventional,
large-scale distributed databases and filesystem, there has been little work ai-
med specifically at evaluating consistency maintenance in service discovery pro-
tocols. Consistency maintenance in service discovery protocols conforms to the
client-centric consistency model, which originates from the work on Bayou [Pet96;
Ter94], a database for mobile systems with unreliable connectivity. The world-
wide naming system, Domain Name Service (DNS) and the World Wide Web sa-
tisfy the eventual consistency guarantee in this model, which states that in the ab-
sence of updates, all replicas converge toward identical copies of each other [Tan02b].

Consistency maintenance in service discovery protocols is similar to maintai-
ning cache coherence in distributed systems [Min90]. Cache coherence ensures
the integrity of the data stored in the local cache of the User. The data stored
may be part of a structured distributed shared memory, using tuple spaces such
as implemented in Jini through JavaSpaces [Mic03a], or simply copies of service
descriptions, as is stored in SLP and UPnP. Franklin et al. describe push-based
and pull-based cache coherence strategies [Fra97]. Service discovery protocols use
asynchronous update notifications to achieve cache coherence.

Existing work on consistency maintenance in service discovery is done by
Dabrowski and Mills from the US National Institute of Standards and Techno-
logy (NIST). They evaluate the consistency maintenance mechanisms in UPnP
and Jini. An architectural-based approach using an Architectural Description
Language (ADL) is used to analyze service discovery systems [Dab01]. They
benchmark the performance of service discovery systems according to their Up-
date Metrics, in a dynamically changing environment, with increasing message
loss [Dab02b] and interface failure [Dab02a] as the communication failure mo-
dels. Dabrowski and Mills also propose a generic model encompassing the design
of first-generation service discovery systems [Dab05]. They suggest service dis-
covery protocols should provide guarantees of correct behavior against a set of
properties which they call Service Guarantees. They report that first-generation



3.3 FAILURE RECOVERY RULES DURING CONSISTENCY MAINTENANCE 47

service discovery systems do not provide guarantees of correct behavior.
Frank and Karl [Fra04] study the impact of caching discovered services in mo-

bile ad-hoc networks. They show that Users in mobile ad-hoc networks remain
inconsistent with a service Manager that has become unavailable, when service
lease periods are long. They propose that the service Manager explicitly an-
nounce when its service becomes unavailable. A cross-layer approach is taken,
where Users learn about the continuous existence of Managers from the under-
lying routing protocol. Frank and Karl claim that this method allows Users to
regain consistency faster than if they depend on the periodic announcements of
the Manager, especially in a highly loaded network. They assume that the de-
mand for a service Manager increases in a highly loaded network, hence increasing
the possibility for Users to receive routing packets from the Manager. We find the
dependance on the routing protocol is not a proper solution when the service Ma-
nager is not in high demand, therefore reducing the chances for interested Users
to refresh their cache on the Manager. Furthermore, this solution is more use-
ful for service removals than service updates. We suggest that the Manager and
the User maintain a subscription lease, which is refreshed periodically through
unicast, so that the Manager will know which Users it should update when the
service changes. We also focus on small systems, where periodic announcements
through multicast are acceptable.

3.3.2 Consistency Maintenance and Failure Recovery In Service Discovery
“Consistency” is the state where the User obtains the correct service information
after the service changes. Users become consistent with the Manager when they
successfully receive update information from the Manager. To explain update
information, we use an example of a Manager which offers a printing service. The
service description is a list of attribute-value pairs.

SD = {DeviceType=Printer,
ServiceType=ColorPrinter,
AttributeList{PaperSize=A4,
Location=Study, PaperTray=High}}

If the attribute or value in the SD changes, for example, “PaperTray” changes
from “High” to “Low”, an update can be sent to the service subscribers to indicate
that the printer is running out of paper. The printer may update the Users via
the Registry, or directly.

As mentioned in Chapter 2, service discovery complies with eventual consis-
tency, because it is client-centric, which tolerates transient inconsistencies. For
discovered services to be useful, it is important that the consistency guarantees
are specified clearly. The Consistency Maintenance Principles (P6 and P7) require
the User and/or Registry to always eventually regain consistency with the Mana-
ger after the service changes. The User detects the change in the Manager, and
regains consistency by obtaining the correct view of the service, either from the
Manager directly (P6), or via the Registry (P7). The principles hold true only



48 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.3

when there is connectivity among the communicating entities (e.g., valid com-
munication paths). The term always eventually states that a successful update
invariably takes place at some time in the future, without giving a concrete time
constraint.

3.3.3 Consistency maintenance mechanisms
Before we delve deeper into the issues facing consistency maintenance in an en-
vironment with communication and node failures, we first introduce the basic
mechanisms that existing service discovery systems implement. The User has to
subscribe either directly to the Manager (2-party subscription) or to a Registry
(3-party subscription) to receive updates. A subscription between the User and
the Manager or between the User and the Registry remains valid as long as the
subscription lease does not expire. To maintain a valid subscription lease, Users
are required to send messages periodically to the lessee to indicate their continued
interest with the service.

There are two basic consistency maintenance methods:

(CM1) Notification (push-based update) - The User receives an update when the ser-
vice description changes. In 3-party subscription, the Manager notifies the
Registry which then propagates the update to subscribed Users. In 2-party
subscription, the Manager notifies subscribed Users directly. Update notifi-
cation is a built-in mechanism in a service discovery protocol. Examples of
state of the art protocols that have this capability are UPnP and Jini.

(CM2) Polling (pull-based update) - The User regains consistency by polling the
Manager or the Registry to retrieve the updated service description. In
3-party subscription, the Manager updates the Registry by re-registering
its services. In both subscription schemes, periodic queries from the User
eventually retrieve the updated service description. Typically, polling is
implemented in the application layer, with hooks from the service discovery
protocol.

Dabrowski and Mills [Dab02a] show that periodic polling is the more effective
method if the application allows persistent polling (even when the lower protocol
layers signal a connection failure), therefore increasing the chances for the User
to retrieve the updated service description eventually. However, Dabrowski and
Mills show that polling is a slower mechanism than update notification because
of the dependency on the period of polling. We find that polling is also a less
efficient mechanism than update notification in scenarios where services rarely
change, causing multiple redundant polls. Thus, in this chapter, we focus only on
recovery for consistency maintenance through notification.

During update notification, the Manager updates the Users by: (1) propaga-
ting an invalidation message that indicates that the service has been updated.
The Manager notifies the interested User that a change has occurred, whenever



3.3 FAILURE RECOVERY RULES DURING CONSISTENCY MAINTENANCE 49

User Registry Manager

ServiceRegistration

ServiceSearch

ServiceFound

SubscriptionRequest

Ack

SubscriptionRenew
ServiceUpdate

Ack
ServiceUpdate

Ack

Figure 3.5: Consistency maintenance through notification with 3-party subscription.
The User discovers the Manager and subscribes to receive updates via the Registry. The
User periodically renews the subscription lease by sending SubscriptionRenew messages.
The Manager sends a ServiceUpdate message when the service changes.

the service changes. Consecutive polling by the User retrieves the updated data.
This method is efficient for a service that has frequent updates, but causes un-
wanted redundancy and delay for services that rarely change. (2) Propagating
the updated data. This method is fast and efficient for a service that changes
infrequently. An adaptive method that dynamically switches between sending an
invalidation message or sending the update can be implemented, as done in the
Alex protocol [Cat92], a filesystem that adapts the type of update propagation
based on the age of the file (it assumes older files are less likely to be modified than
younger files). However, to our knowledge, no existing service discovery protocols
adopt the adaptive mechanism, due to the complexity in implementation.

Consistency maintenance in Registry architectures relies on the successful com-
munication between the Manager and the Registry, and between the Registry and
the User (3-party subscription). Peer-to-peer architectures rely only on the suc-
cessful communication between the User and the Manager (2-party subscription).
An example of consistency maintenance using 3-party subscription is shown in
Figure 3.5.

3.3.4 Recovery rules for consistency maintenance

Due to temporary communication failures or node failures, notification of updates
may fail. Nevertheless, when connectivity among entities is restored, the service
discovery system is expected to recover and regain consistency, as stated by the
Configuration Update Principles. Our in-depth analysis of the behavior of service



50 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.3

discovery during communication and node failures results in a novel method of
identifying, classifying and proposing new recovery rules based on the type of up-
date and failure scenario. Table 3.1 is a summary of our classification of recovery
rules.

Table 3.1: Classification of recovery rules for consistency maintenance. Subscription-
recovery rules for each type of update take effect when subscription still remains valid.
Purge-rediscovery rules occur when subscription expires, and may coincide based on the
failure scenario.

Subscription-recovery Purge-rediscovery
Update scenario Recovery

rule
Purge and rediscover scenario Recovery

rule
Critical update SRC1 Manager rediscovers the Registry

(and vice-versa)
PR1

SRC2 User rediscovers the Registry PR2
Non-critical
update

SRN1 Registry rediscovers the User PR3

SRN2 Manager rediscovers the User PR4
User rediscovers the Manager PR5

During communication and node failures, the subscription between the en-
tities may remain valid, even though update notification fails. This is because
the participating entities may face short-term failures, and restore connectivity
before the subscription lease expires. Hence, it is up to the continuing subscrip-
tion process to ensure Users regain consistency. We call this type of recovery
subscription-recovery. When the subscription lease expires, consistency main-
tenance depends on the inherent capability of the service discovery protocol to
detect, and rediscover purged nodes and services. Hence, this type of recovery is
called purge-rediscovery.

1. Subscription-recovery. The success of consistency maintenance using this type
of recovery depends on how persistently the subscription process tries to update
the User. The degree of persistence in notifying updates depends on the type of
update scenario: critical update and non-critical update. This is because not all
applications require the same level of persistence in sending and receiving upda-
tes. By specifying the update scenario, we isolate necessary rules for successful
consistency recovery.

Critical update. This update scenario applies to services that are critical,
and need correct information urgently. An example is a fire alarm Manager that
changes the value of an attribute, “status” from “ON” to “OFF”, and is required
to update the PDA of the homeowner. For critical updates, we propose two types
of recovery rules.

(SRC1) Acknowledgments and retransmissions of notification - Update notifications



3.3 FAILURE RECOVERY RULES DURING CONSISTENCY MAINTENANCE 51

sent by the Manager or the Registry must be acknowledged to indicate
success or failure. We propose no retransmission limit for the notification
messages. Retransmission is only stopped when (a) the subscription expires,
(b) acknowledgment for the notification is received, or (c) the application
layer indicates loss of connectivity. Update retransmissions can be spaced
in a periodic manner, until acknowledged by the Registry or the User.

(SRC2) Active User and Registry monitoring of updates - This rule takes effect if
the User requires a history of missed updates from the Manager. The User
and the Registry monitor either the sequence number on the update no-
tifications, or the time period for the next notification (the latter applies
only to Managers that provide fixed, periodic updates). When an expec-
ted update is missed, the User or the Registry requests the update. The
Manager caches the history of service changes and only purges the cached
updates after all interested Users successfully obtained the complete view
of the service.

Non-critical update. Unlike the critical update scenario, the non-critical up-
date scenario applies to services that are not sensitive to, or not overly affected
by missed updates. An example is a printer Manager that updates a User when
its paper tray empties. We propose the following recovery rules to improve con-
sistency maintenance performance.

(SRN1) Acknowledgments and retransmissions of notification - Update notifications
sent by the Manager or the Registry are acknowledged to indicate success or
failure. Retransmissions of unsuccessful notification is done until either (a)
retransmission limit is reached, (b) acknowledgment is received, (c) the sub-
scription expires, (d) the application layer indicates lack of connectivity, or
(e) the service changes again, requiring the Manager to reset the notification
process.

(SRN2) Future retry of unsuccessful notification - This rule occurs after SRN1 fails
to update the User. The Manager caches information on inconsistent Users
and retries notification once a message from the inconsistent User is recei-
ved (such as the subscription lease renewal message). The status of the
inconsistent User is cached until (a) the subscription expires, (b) the service
changes again, requiring the Manager to reset the notification process, or
(c) the update is acknowledged.

The Consistency Maintenance Principles only require the User to regain consis-
tency eventually, but not necessarily recover particular values of previously missed
updates. Therefore recovering updates caused by multiple changes are not treated
in the non-critical update scenario.



52 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.3

2. Purge-rediscovery. The success of consistency maintenance using this type of
recovery depends on the proficiency of the service discovery protocol to detect,
register and rediscover nodes and services after the subscription expires. We
propose the following recovery rules for the User to regain consistency, based
on the “purge” scenario. A combination of purge-rediscovery rules take effect if
several failure scenarios occur simultaneously.

(PR1) The Manager purges the Registry, or vice-versa: the Manager and the Regis-
try rediscover each other through (a) the Registry’s periodic multicast an-
nouncement, or (b) the Manager’s periodic multicast announcement (here,
the Registry contacts the Manager). When the Manager re-registers, the
Registry notifies interested Users of the new registration. The User regains
consistency from the Registry notification. Users receive notifications of new
service registrations by explicitly requesting for service notification, when
they first establish contact with the Registry.

(PR2) The User purges the Registry: the User rediscovers the Registry through
(a) the periodic Registry announcement, or (b) the User’s periodic multicast
announcement (here, the Registry contacts the User). The User then queries
the Registry for the required service to regain consistency with the Manager
(provided that the Manager registers the updated service description).

(PR3) The Registry purges the User: subsequent lease renewal from the User to the
Registry results in a re-subscription process, where the User then receives
the updated service description from the Registry.

(PR4) The Manager purges the User: subsequent messages received from the pur-
ged User allows a re-subscription process, where the User then receives the
updated service description.

(PR5) The User purges the Manager: the User can purge the Manager when the
service lease expires, or when the Registry notifies the User when it purges
the Manager. The User purges the Manager only if the application layer
is not communicating with the Manager. The User rediscovers the Mana-
ger through (a) multicast query with its requirements, where the matching
Manager replies with the updated service description, or (b) periodic mul-
ticast service advertisements of the Manager, where the User then queries
the Manager for the service description, or (c) unicast query to the Registry
for the service

Further analysis in Chapter 5 shows that retransmissions and acknowledg-
ments through SRC1 and SRN1 are useful for short term communication failures,
as long as subscription remains valid. SRC2 and SRN2 are essential for satisfying
the eventual consistency guarantee in the Consistency Maintenance Principles.
During short-term node failures (where nodes recover from failures before the
subscription expires), SRN2 is the most effective rule. When the subscription



3.4 DISCUSSION AND CONCLUSION 53

expires, PR5 in 2-party subscription is found to be most effective, where Users
can listen to multicast service advertisements by the Manager, and retrieve the
updated service. PR1 increases the effectiveness of 3-party subscription, where
the Registry notifies the Users when the Manager registers.

3.4 Discussion and Conclusion
Our analysis in Chapter 2 leads to a resource-aware Registry-based architecture,
and uses Registry election and primary-based recovery protocols to eliminate sin-
gle point of failure issues in a lossy environment. We also provide a more flexible
implementation across heterogenous nodes by abstracting away the underlying
protocol stacks. These design solutions satisfy the 3Rs from Chapter 1; reliabi-
lity, resource-constraints and heterogeneity of devices and networks.

In this chapter, we focus on reliability, so that the system can be effective
against communication and node failures. A reliable service discovery system
satisfies the effectiveness criteria in the Research Question presented in Chapter 1.
Towards this goal, we specify the fundamental behavior for service discovery in
small, unattended systems through the Service Discovery Principles. We then
propose that service discovery systems apply the recovery rules so that they can
self-heal from failures, and thus satisfy the principles.

We identify the following as opportunities to produce a reliable service disco-
very system which gives some guarantees on functional correctness:

1. A system that provides guarantees on correct functional behavior - Certain
existing state of the art systems like SLP do not satisfy the Consistency
Maintenance Principles. Other service discovery systems like Jini and UPnP
implicitly claim that they support the fundamental behaviors of service
discovery. None, however, provide guarantees of correct behavior [Dab05].
We design a system for the home that adheres to the Service Discovery
Principles so that applications can rely on the service discovery protocol to
function correctly.

2. Formal verification of models of the system - To claim that our system gi-
ves guarantees of correct behavior, we formally verify our design against
the Service Discovery Principles, and improve the design until the princip-
les are satisfied. The design choices from Chapter 2 enable models of the
system to be formally verified against the Service Discovery Principles: (a)
there are no dependencies on the underlying protocol stacks for reliability
and detection of available entities in the network. Therefore we can verify
(a model of) a stand-alone service discovery system. (b) We successfully
verify models of the system with resource-lean nodes because we partition
the service discovery tasks based on the resource-constraints; resource lean
nodes depend on more powerful nodes to perform correct service discovery.
The results of the verification depend on the accuracy of the models [Bri02].



54 FUNCTIONAL PRINCIPLES OF SERVICE DISCOVERY 3.4

3. Incorporate recovery rules for the common failure scenarios - The recovery
rules described in this chapter enable a service discovery system to recover
from short and long term failures. We implement some recovery rules that
are not found in existing systems (e.g. SRN2). We also implement the rules
that support the context of our operational issues (e.g. for PR5, instead
of implementing multicast service advertisements and multicast queries like
UPnP, we only implement multicast queries when the Registry fails to reduce
bandwidth consumption).

These opportunities lay the foundation for the design of FRODO which we
present in Chapter 4. In Chapter 5, we show that FRODO satisfies the Ser-
vice Discovery Principles through formal verification. FRODO is the first service
discovery system that provides some notion on functional correctness. We also
analyze the effectiveness of the recovery rules in FRODO, UPnP and Jini though
simulations.



Chapter 4
FRODO System Overview

Programs for sale: Fast, Reliable, Cheap: choose two.
Anonymous

4.1 Introduction
In this chapter, we describe a Framework for Robust and Resource-aware Disco-
very (FRODO)1 [Sun03], our service discovery system built for the home environ-
ment.

First, we describe our design approach, that leads to an in-depth understan-
ding on the behavioral properties of service discovery systems, and eventually the
formulation of the Service Discovery Principles and the recovery rules already
presented in Chapter 3. As summarized in Figure 4.1, there are three phases to
our design approach:

� In Phase 1, we analyze the requirements for service discovery in the home.
We also systematically identify areas for improvement in existing state of
the art; our taxonomy of service discovery systems in Chapter 2 is a result
of this phase.

� Phase 2 is divided into two parts: (2a) High-level system design of FRODO,
and (2b) Design evaluation. For the initial high-level design of the protocol,
we use diagrammatic notations. For a more detailed and precise specifi-
cation, we use the executable Architectural Description Language (ADL),
Rapide [Luc98]. To evaluate the design, we test the Rapide-based speci-
fication of FRODO against different simulated failure scenarios. We then

1This work is published in the 4th Int. Conf. on Information, Communications & Signal
Processing and 4th IEEE Pacific-Rim Conf. On Multimedia (ICICS/PCM), Singapore, vol. III,
IEEE Computer Society Press, Dec. 2003, pp 1929-1933

55



56 FRODO SYSTEM OVERVIEW 4.1

Sequential step

Parallel steps

Feedback step, triggered
by error detection

Initial design
specification

using diagrams

Detailed design
specification
 in Rapide

Rapide simulation, testing
and performance

benchmark with different
failure scenarios

Formal methods;
simulation and verification

(a) High-level system
design

(b) Design
     evaluation

Phase 2: Design

Chapter 4 Chapter 5

Prototype
implementation

 Testing and
validation

Phase 3:
Implementation

Chapter 5
Result of analysis

Service Discovery
Principles and
recovery rules

Chapter 3

Chapter 4:
Identify requirements for

the home

Chapter 2:
Analyze state of the art

designs

Phase 1: Requirement Analysis

Figure 4.1: The FRODO design approach. In Phase 1, we analyze state of the art
designs and identify areas for improvement. We also identify requirements for service
discovery for the home. In Phase 2, we specify the high-level design of the protocol in
flowcharts and Rapide. We then improve and evaluate the design through model-checking
and simulation. In Phase 3, we implement our prototype, which we use to compare the
implementation performance against the simulated model



4.2 FRODO DESIGN APPROACH 57

use formal methods to detect hard-to-find design errors, and to give some
notion on functional correctness. We enhance and evaluate the performance
of FRODO by comparing it against the Rapide-based models of Jini and
UPnP.

� Phase 3 is the realization of our design through prototyping, and validation
of a selected subset of the simulations via measurements.

We introduce several innovations to service discovery systems:

1. Classification of devices based on resource-constraints, so that service dis-
covery tasks can be partitioned effectively.

2. Primary-based recovery protocols [Tan02b] such as a Backup for the Regis-
try, and Registry monitoring.

3. Registry election by a class of powerful nodes, so that a single Registry is
elected. Registry election allows the system to continue functioning, even
when the Registry and the Backup face persistent failures simultaneously.

This chapter is organized as follows. Section 4.2 describes the overall design
approach of FRODO, but focusing more on the requirements (Phase 1). Sec-
tion 4.3 gives an overview of the high-level design of FRODO (Phase 2a), which is
the product of our design approach. Since we give details on the design evaluation
(Phase 2b) and prototype implementation (Phase 3) in Chapter 5, we do not ex-
plain these phases in this chapter. We discuss the advantages and disadvantages
of our approach to designing FRODO in Section 4.4.

4.2 FRODO Design Approach
We base our design approach shown in Figure 4.1, on the well-known Waterfall
model [Roy70]. The emphasis in this thesis is more on the design, and less on
the development. This approach saves implementation time because most of the
protocol errors are detected and rectified early in the design phase (less than
four months for developing the prototype). Furthermore, it is easier to modify
and strengthen the protocol in the design phase, compared to the implementa-
tion phase. We strengthen the design by incorporating formal methods (model-
checking) and simulations (with a performance benchmark) into the design phase.



58 FRODO SYSTEM OVERVIEW 4.2

T
a
b
le

4
.1

:
R
eq

u
ir
em

en
ts

,
d
es

ig
n

so
lu

ti
o
n
s

a
n
d

a
ss

u
m

p
ti
o
n
s

in
F
R
O

D
O

.

R
e
q
u
ir

e
m

e
n
t

O
p
e
r
a
ti
o
n
a
l

Is
su

e
D

e
si

g
n

so
lu

ti
o
n

A
ss

u
m

p
ti
o
n

R
1

S
y
st

e
m

si
z
e

S
m

a
ll

si
ze

d
sy

st
em

,
w

it
h

a
si

n
g
le

R
eg

is
tr

y
a
rc

h
it

ec
tu

re
T

h
e

h
o
m

e
co

n
si

st
s

o
f

a
li
m

it
ed

n
u
m

b
er

o
f
d
ev

ic
es

R
1

R
e
so

u
r
c
e
-

c
o
n
st

r
a
in

ts
S
er

v
ic

e
d
is

co
v
er

y
fu

n
ct

io
n
s

a
re

p
a
rt

it
io

n
ed

a
cr

o
ss

d
e-

v
ic

e
cl

a
ss

es
,

b
a
se

d
o
n

in
cr

ea
si

n
g

re
so

u
rc

e-
co

n
st

ra
in

ts
;

3
C

,
3
D

a
n
d

3
0
0
D

.
T

h
e

R
eg

is
tr

y
a
rc

h
it
ec

tu
re

a
ll
o
w

s
3
C

a
n
d

3
D

n
o
d
es

to
d
ep

en
d

o
n

3
0
0
D

n
o
d
es

to
el

ec
t

a
n
d

m
a
in

ta
in

th
e

R
eg

is
tr

y.
3
C

a
n
d

3
D

U
se

rs
a
n
d

M
a
n
a
g
er

s
b
eh

a
v
e

d
iff

er
en

tl
y

fr
o
m

3
0
0
D

U
se

rs
a
n
d

M
a
n
a
g
er

s.

A
t

le
a
st

o
n
e

3
0
0
D

n
o
d
e

is
a
v
a
il
a
b
le

fo
r

th
e

ro
le

o
f

R
eg

is
tr

y
(e

.g
.

T
V

,
se

t-
to

p
b
o
x
,
P

C
).

R
2

L
o
ss

y
e
n
v
ir

o
n
-

m
e
n
t

(1
)

A
u
to

m
a
ti

c
R

eg
is

tr
y

el
ec

ti
o
n

to
el

im
in

a
te

a
si

n
g
le

p
o
in

t
o
f

fa
il
u
re

.
(2

)
A

B
a
ck

u
p

th
a
t

m
o
n
it
o
rs

th
e

li
v
e-

li
n
es

s
o
f

th
e

R
eg

is
tr

y,
a
n
d

a
u
to

m
a
ti

ca
ll
y

re
p
la

ce
s

th
e

R
eg

is
tr

y.
(3

)
R

et
ra

n
sm

is
si

o
n

a
n
d

a
ck

n
o
w

le
d
g
em

en
ts

o
f

cr
it

ic
a
l
m

es
sa

g
es

.
(4

)
L
ea

si
n
g

a
n
d

p
o
ll
in

g
fo

r
a
u
to

m
a
-

ti
c

g
a
rb

a
g
e

co
ll
ec

ti
o
n
.

(5
)

P
er

io
d
ic

a
n
n
o
u
n
ce

m
en

ts
to

d
et

ec
t

p
u
rg

ed
en

ti
ti
es

.
(6

)
N

eg
o
ti
a
ti
o
n

a
m

o
n
g

m
u
lt
i-

p
le

R
eg

is
tr

ie
s

to
m

a
in

ta
in

a
si

n
g
le

R
eg

is
tr

y.
(7

)
C

a
ch

e
d
is

co
v
er

ed
en

ti
ti
es

,
a
n
d

cr
o
ss

-c
h
ec

k
se

n
d
er

s
o
f
se

le
ct

ed
m

es
sa

g
es

,
so

th
a
t

a
p
u
rg

ed
en

ti
ty

ca
n

b
e

re
d
is

co
v
er

ed

(1
)

T
em

p
o
ra

ry
co

m
m

u
n
ic

a
ti
o
n

fa
i-

lu
re

(m
es

sa
g
e

lo
ss

,
li
n
k

fa
il
u
re

,
et

c.
)

a
n
d

n
o
d
e

fa
il
u
re

(c
ra

sh
es

,
in

te
rf

a
ce

fa
il
u
re

,
et

c.
).

(2
)

N
o

sy
st

em
a
d
m

i-
n
is

tr
a
ti
o
n
.

R
3

S
y
st

e
m

h
e
te

r
o
-

g
e
n
e
it
y

D
et

ec
ti
o
n

o
f
en

ti
ti
es

,
a
n
d

re
tr

a
n
sm

is
si

o
n
s

a
n
d

a
ck

n
o
w

-
le

d
g
em

en
ts

a
re

d
o
n
e

in
th

e
se

rv
ic

e
d
is

co
v
er

y
p
ro

to
co

l
A

n
y

p
a
ir

o
f
n
o
d
es

in
th

e
sy

st
em

ca
n

re
ce

iv
e

a
n
d

se
n
d

m
es

sa
g
es

to
ea

ch
o
th

er
.

U
n
ic
a
st

is
“
o
n
e-

to
-o

n
e

co
m

-
m

u
n
ic

a
ti
o
n
”
,
a
n
d

m
u
lt
ic
a
st

is
“
o
n
e-

to
-m

a
n
y

co
m

m
u
n
ic

a
ti
o
n
”
.

R
4

S
e
c
u
r
it
y

S
ec

u
ri

ty
m

ea
su

re
s

a
re

n
o
t

in
cl

u
d
ed

in
th

e
se

rv
ic

e
d
is

-
co

v
er

y
fu

n
ct

io
n
s

T
h
e

a
p
p
li
ca

ti
o
n

la
y
er

p
ro

v
id

es
se

-
cu

ri
ty

.



4.2 FRODO DESIGN APPROACH 59

Phase 1: Requirement Analysis. We define the following as the requirements for
service discovery in the home:

(R1) Low cost of devices - New, sophisticated technologies should not consume
too much resources, nor should they increase cost.

(R2) Robust - System administration is not available, therefore the system should
continue to meet user expectations, and automatically recover from failures
as fast as possible.

(R3) Portable design - the technology should be able to run on a variety of net-
work stacks, because devices are manufactured by different vendors.

(R4) Secure - the system should not be vulnerable to security threats such as
unauthorized access, denial of service, repudiation, etc.

The following describes the design solutions that we provide to satisfy the
requirements above. When necessary, we refer to Table 4.1, which summarizes
the design solutions and the assumptions in FRODO, according to our study done
in Chapter 2(Sections 2.6 and 2.9).

(R1) As shown in Table 4.1(first row), FRODO is a single Registry-based ar-
chitecture. This is because FRODO is a small-scale system, and a single
Registry allows resource-lean nodes to depend on the more powerful Regis-
try for service discovery. Multiple Registries unnecessarily waste resources.
We also classify devices based on resource-constraints. The device classi-
fication enables the service discovery tasks to be partitioned based on the
limitations of the devices:

� 300D (Dollar) device class - powerful devices, controlled by a complex
embedded computer. Their memory requirements are more than 1MB
(e.g. set-top boxes). A node in this class can be a Manager, a User,
and a Registry.

� 3D device class- medium complex devices (e.g. temperature controller).
A node in this class can be a Manager and a User, with fewer functions
compared to the 300D entities.

� 3C (Cent) device class - simple devices with restricted resources (e.g.
simple sensors). Nodes in this class are only Managers.

Figure 4.2 shows the three device classes in FRODO, and the entities con-
tained in each class. Table 4.1(second row) summarizes the resource-aware
measures that FRODO implements.

(R2) We incorporate fault-tolerant measures in the protocol, so that the system
can recover from failures. Table 4.1(third row) lists the various recovery
behaviors in FRODO.



60 FRODO SYSTEM OVERVIEW 4.2

Network abstraction

Manager ManagerManager

User User

Registry

300D

3D

3C

Application

Application

Application

Figure 4.2: FRODO device classes. 300D devices are the most powerful, thus the
Registry is elected among these devices. The bigger the box that depicts the Manager
or the User, the heavier the tasks for that device class. The application triggers the
Manager and the User entities by providing the values for the attributes, and prompting
when the User should discover the service

(R3) FRODO is not influenced by the underlying protocol stacks, such as the
type of transport layer and whether the network is based on wired or wi-
reless communication. We abstract from the underlying protocol stacks,
and simply require unicast and multicast capabilities from the network. Ta-
ble 4.1(fourth row) summarizes our abstraction levels, and the definitions
for unicast and multicast.

(R4) We do not integrate security features in our prototype, as stated in Ta-
ble 4.1(fifth row). However, we require a full-fledged implementation and
deployment of FRODO to include security measures (at least in the appli-
cation layer), such as authentication, access control, encryption, etc.

Next in our requirements analysis is to specify the service discovery functions
in FRODO. Chapter 2(Table 2.1) provides a study of the inherent functions of
service discovery. We find Configuration Discovery, Registration, SD Discovery
and Configuration Purge are implicitly implemented in the state of the art designs,
hence we incorporate these functions in FRODO. However, only Jini and UPnP
implement the complete Consistency Maintenance function (the User is updated).
Partial implementation of Consistency Maintenance is available in most Registry
systems (Registries are updated by Managers, or by each other, but the Users
do not receive update notifications). We recognize Consistency Maintenance as a
vital function in service discovery, because unattended systems with collaborating
applications depend on the service discovery protocol to perform correctly. We



4.2 FRODO DESIGN APPROACH 61

analyze in more detail the Consistency Maintenance function in Chapter 3 and
Chapter 5.

Phase 2: Design. Once the requirements are clear, we enter the design phase. The
design phase consists of the high-level system design of FRODO, and the design
evaluation, which improves the design and performance. Further details on design
evaluation are given in Chapter 5.

� Initial design - We specify the initial design using diagrammatical notations.
Diagrammatical notations are beneficial because we focus only on the the
protocol behavior, and are not distracted by implementation details (such
as programming language syntax, packet size, timer values, etc.).

� Detailed, executable design using Rapide - The design specification using
diagrams is not complete, because it does not provide details. Therefore,
we use an ADL tool, called Rapide to further specify the design. Rapide is
designed to support component-based development of systems by utilizing
architecture definitions as the development framework. It offers event-based
simulation for distributed, time-sensitive systems [Luc98]. The FRODO be-
havioral specification defines how an interface in FRODO (an ADL interface
is analogous to a “class” in object-oriented programming) reacts to various
inputs, produces output events, and change values of variables.

� Model-checking - To check the functional correctness of FRODO, we build
several abstracted models of FRODO using the model-checker DT-Spin
[Bos97]. Model-checking is useful because it gives an in depth understan-
ding of how processes interact concurrently in a protocol, how to identify
the properties that a service discovery protocol should satisfy, and how to
detect design errors that are not captured during simulations. The proper-
ties we model-check inspired the formulation of the seven Service Discovery
Principles.

� Rapide simulation and performance benchmark - We now focus on the non-
functional aspects of the design. The resulting Rapide-based FRODO spe-
cification is executable, and can react to event-based simulation of com-
munication scenarios. Simulations can be used at early stages of the de-
sign phase to investigate correctness and performance, before the system is
built [Luc02]. We improve our design by testing with different failure scena-
rios. We also compare multiple versions of our design, and against Rapide
models of Jini and UPnP (built at NIST), to improve performance.

Phase 3: Implementation. We implement a prototype of FRODO in C to validate
the simulation and to measure the resource consumption. We show that FRODO
is a lightweight protocol, even with various fault-tolerant measures. We success-
fully test and validate the prototype against the simulated model, to show that the



62 FRODO SYSTEM OVERVIEW 4.3

experimental observations corroborate the simulations. Details on this phase are
given in the next chapter. On-going work in this area is to improve the prototype
so that FRODO can be deployed as a full-fledged implementation.

Our design approach gives confidence in the design, which is demonstrated by
the fact that only around three design errors were found during prototype testing
and validation, (e.g. UDP packet size limit requires serialized FRODO messages
to be packetized and numbered sequentially). Other possible errors were captured
and rectified during the earlier design phase.

The design approach also gives a deep understanding of the complexity that
underlies a service discovery system, and the behavioral properties. This under-
standing provides the inspiration for formulating the Service Discovery Principles
and the recovery rules in Chapter 3.

4.3 FRODO Overview

Configuration 
Discovery

Consistency 
MaintenanceRegistration

SD Discovery

Configuration 
PurgeOfferedSD(m) UpdateSD(m)

UpdateSD(m)

Requirement(u)

DisConn(e,e’)

DisConn(e,e’)

DisConn(e,e’)

DisConn(e,e’)

MatchingSD(c,u)

DisConn(e,e’)

|DiscoveredSD(u,m)|=0 
Requirement(u)

start

OfferedSD(m) UpdateSD(m)|E|<2

Conn(e,e’)

Figure 3.4: Service discovery system life cycle. When a system consists of more than
one entity, Configuration Discovery is performed, followed by Registration or SD Dis-
covery. Registration is triggered when there exists a Manager with OfferedSD(m). SD
Discovery is triggered when there exits a User with Requirement(u), or if the Registry
has MatchingSD(c, u). SD Discovery is done every time there is a new requirement or as
long as the User has not discovered the required service, where |DiscoveredSD(u, m)| = 0.
When UpdateSD(m) occurs in the Manager (SD changes), Consistency Maintenance is
performed. Configuration Purge occurs every time entities face DisConn(e, e′) due to
failures. When failures end, and Conn(e, e′) is restored, the cycle is restarted.

We now provide an overview of the service discovery functions in FRODO.
We show Figure 3.4 from Chapter 3 again in this section to describe the general
lifecycle of the FRODO service discovery system. There are four main functions in
FRODO; Configuration Discovery, Registration, SD Discovery, and Configuration
Update (which consists of Configuration Purge and Consistency Maintenance).



4.3 FRODO OVERVIEW 63

Table 4.2: Summary of the functions in FRODO, and the methods to achieve the
functional objectives

Function Subfunction Method
Configuration
Discovery

Registry auto-
configuration

(a) Registry election among 300D nodes, (b)
Backup assignment by the Registry, (c) Regis-
try and Backup handover upon detecting more
powerful nodes

Active discovery Multicast announcements by the Registry,
300D nodes, and 3D Managers

Passive discovery All nodes listen to the multicast announce-
ments of the Registry

Registration Solicited registra-
tion

Registry requests an unregistered node that an-
nounces itself to register

Unsolicited regis-
tration

Managers register when they detect a Registry
that they have not seen before

SD Discovery Unicast query Users send unicast queries to the Registry to
discover services

Multicast query Users send multicast queries to discover ser-
vices, when the Registry is not available

Service notification Users request notification from the Registry,
when Managers that match their requirements
register

Configuration
Update

Configuration
Purge

(a) Lease renewals by 300D nodes, (b) Polling
of 3D and 3C Managers by the Registry

Consistency Main-
tenance

(a) 2-party subscription (300D Managers up-
date the Users directly), (b) 3-party subscrip-
tion (the Registry relays the updates from 3D
and 3C Managers to the Users)

The transitions between functions are triggered by the appearance of services,
OfferedSD(m), requirements, Requirement(u), service changes, UpdateSD(m) and
conditions DisConn(e, e′) (disconnection) and Conn(e, e′) (valid communication
paths exits between the nodes).

Table 4.2 gives more details on how each service discovery function from Fi-
gure 3.4 is implemented in FRODO. This table can also be used as a roadmap for
reading the remainder of this chapter.

In this section, we first describe the ideal state of the function, when there
is no failure of communication or nodes. Where necessary, we give insight into
failure scenarios and explain the recovery behavior. For further details on the
design, which includes failure scenarios, we refer to the design specifications 1 .

1Further design details can be found in the Frodo High-Level and Detailed De-
sign Specifications, version 1.0. Technical Report TR-CTIT-06-25, published at
http://eprints.eemcs.utwente.nl/2710, Enschede, June 2006.



64 FRODO SYSTEM OVERVIEW 4.3

4.3.1 Configuration Discovery
FRODO provides zero-configuration through Registry election and automatic en-
tity discovery through multicast announcements. FRODO is the first Registry-
based service discovery system to: (1) automatically elect a Registry based on
resource-constraints, (2) maintain the liveliness of the Registry through primary-
based recovery protocols such as automatically appointing a Backup, and monito-
ring the Registry, and (3) conduct negotiation among multiple Registries so that
the system converges successfully, after network partitioning (caused by commu-
nication failures).

Managers need to discover the Registry to register and update their services,
while Users need to discover the Registry to query for services. 300D and 3D nodes
are able to discover the Registry through active discovery, where the nodes initiate
the discovery by sending multicast announcements. All nodes can also discover the
Registry through passive discovery, by listening to Registry announcements (3C
Managers discover the Registry using only this method, since they are assumed
not to have the capability to do periodic announcements).

We give the details of Registry auto-configuration, active and passive discovery
in the following.

4.3.1.1 Registry auto-configuration

Unlike competitor Registry-based systems like Jini and SLP, the Registry in
FRODO is elected without the intervention of a system administrator. There
are several methods to ensure that a single Registry is automatically elected, and
maintained. First, Registry election is carried out by 300D nodes to elect the most
powerful node as the Registry. Next, Backup assignment is done by the Registry.
Registry and Backup handover is done when a more powerful node than either the
Registry or the Backup is detected (the new node must have processing power
above a certain threshold, defined at system implementation).

1. Registry election. A 300D node sends a multicast MyResource message at
initialization (in this chapter, we do not give details on message format,
as this information is available in the high-level and detailed specificati-
ons [Sun06a]). If the 300D node receives another MyResource message, the
election is started. Else, the 300D node simply times out and becomes the
Registry. The most powerful node which has the highest rank is elected
as the Registry. The Registry sends a multicast IamRegistry message to
announce its existence. Henceforth, this announcement is sent periodically.

The following are the parameters for the election:

(a) device orientation, where a purely wired device is given the highest
priority, and a purely wireless device is given the lowest priority. A
device with both orientations (such as a laptop) is given medium prio-
rity.



4.3 FRODO OVERVIEW 65

(b) processing power
(c) available memory size
(d) unique device identifier

A 300D device checks the parameters of a remote device contained in the
received MyResource message to determine whether it is superior. The
values of the device orientation and processing power are given more priority
thus will be compared first. Memory size and the value of the unique device
identifier will be considered to break a tie between two devices with the
same device orientation and processing power. This is because we assume
that any device with a minimum available memory size of 1MB is sufficient
to store configuration information (e.g. registrations, subscriptions). The
universally unique device identifier is used to break a tie between two devices
of the same type by comparing which device has the larger identifier.

Failure recovery:

� It is possible that a Registry is successfully elected, but crashes before
it can announce itself. To ensure that such a scenario does not cause
the system to halt, we make 300D nodes that lost the election wait
for the Registry announcement. Upon detecting that the Registry has
become silent after the election, a 300D node can restart the election
by requesting (through multicast) another election round. 300D nodes
that receive this request wait for some time before actually restarting
the election, to give the existing Registry a chance to announce itself
again (just in case the initial Registry announcement is lost).

� Failures can cause multiple Registries to be elected. Registries nego-
tiate to produce a single Registry, by sending messages containing their
resource information, exactly as done in the MyResource messages.

2. Backup assignment. During the election, a node that eventually becomes
the Registry creates a RankList consisting of resource information of 300D
nodes that participated during the election. This allows the Registry to
assign or replace a Backup. The Registry assigns the next powerful node in
the RankList as the Backup. Once the Backup acknowledges the assignment,
the Registry sends the tables that contain configuration information. There
are several tables that the Registry maintains and backs up:

(a) ServiceLookup - registration data on available SDs
(b) RankList - list of available 300D nodes and their resources
(c) ServiceNotification - list of Users and the services they seek, so that

Users can be notified if a required service becomes available
(d) SubscriptionTable - list of Users and the Managers for update propa-

gation



66 FRODO SYSTEM OVERVIEW 4.3

Failure recovery:

� To indicate success or failure of receiving the tables, the Backup sends
a response (an Info message), with the flag for each table turned on
(if successful). The Registry resends the missing table, where upon
successive failures, the Registry cancels the Backup and assigns another
as the Backup.

� The Registry and the Backup poll each other periodically, by sending
Hello messages. The Registry polls first. If the Backup does not receive
the poll until a waiting period expires, the Backup initiates the poll.
The Backup waits for the poll from the Registry, before it assumes the
Registry has crashed, and sends the IamRegistry announcement.

� Other 300D nodes may detect that the Registry is no longer responding,
in which case, they send a request for reelection. Upon receiving this
request, the Backup quickly polls the Registry to confirm the validity
of the request. The Backup then sends the IamRegistry announcement
to stop the full election from taking place, if there is no response from
the Registry.

� The Backup may receive multiple assignments from different Registries,
due to network partitioning. The Backup notifies these Registries of
the presence of each other. This speeds up Registry negotiation.

3. Registry and Backup handover. A 300D node may enter the system after the
Registry election is completed. The resources of the new node are compared
to those of the Registry and the Backup. If there is a substantial difference,
the role of the Registry or the Backup is handed over to the new node.

Failure recovery: The Registry is able to cancel Backups in case of multiple
Backup assignments due to network partitioning.

Future work includes investigating how the Backup and 300D nodes can monitor
the Registry’s reliability. Nodes should be able to isolate the Registry based on
a “reliability factor” which is reduced every time the Registry is disconnected.
Nodes can agree on whether the Registry should be isolated based on a majority
consensus [Pea80; Wan05].

4.3.1.2 Active discovery

A 300D node discovers the Registry when it receives a response to the MyRe-
source message, which it sends upon initialization. A 3D node sends a multicast
SmallDevAnnouce message periodically to indicate its presence to the Registry.
3D nodes uses a bounded exponential back-off algorithm [Tan02a] to conserve re-
sources (the waiting period for the next announcement is twice the wait period for
the previous announcement, until a limit is reached, where upon the node then
resets the waiting period to the initial period).



4.3 FRODO OVERVIEW 67

4.3.1.3 Passive discovery

All nodes listen to the periodic Registry announcements. A 300D node keeps a list
of recently discovered Registries, so that it may register with a new Registry. This
is because the Backup may take over the role of the Registry, with no knowledge
of the 300D node. The 300D node has to initiate registration upon discovering a
new Registry.

300D nodes also monitor the periodic announcement of the Registry, so that
they can restart Registry election when the expected announcement does not
arrive. 3D and 3C nodes cache the Registry identifier of the most recent announ-
cement.

Failure recovery: Both active and passive discovery are the failure recovery
mechanisms for rediscovering nodes that are purged (because of communication
failure), but are still available in the system.

4.3.2 Registration
Registration takes place when a Manager has at least one SD (Service Descrip-
tion) to register. The SDs are stored by the Registry, in the ServiceLookup table.
There are 2 types of registration methods; solicited and unsolicited registrations.
Solicited registration allows the Registry to initiate the registration when it dis-
covers an unregistered Manager. Unsolicited registration allows a Manager to
register with a Registry that it has not seen before. We describe each of these
methods in the following.

4.3.2.1 Solicited registration

Solicited registration is initiated by the Registry when the Registry receives an
announcement (a SmallDevAnnounce or a MyResource message) from an unknown
source. The Registry requests the unknown source to register (by sending a
SrvRegReq message). If the node is a Manager, it replies with a SrvReg message
for each SD. Part B of Figure 4.3 shows this interaction.

4.3.2.2 Unsolicited registration

For 300D nodes, unsolicited registration is done when a new Registry is detected
through passive discovery. 3D and 3C nodes only initiate unsolicited registration
when they purge the Registry (when an expected response does not arrive), and
upon receiving a fresh Registry announcement.

Failure recovery:

� Every service registration message is acknowledged to indicate successful
registration. If the acknowledgement is not received, the Manager retries



68 FRODO SYSTEM OVERVIEW 4.3

Registry:300D Manager:3D

SrvReg

User:Node

SrvNotFound

Service
notification requested

SrvSearch

SmallDevAnnounce

SrvRegReq

SrvFound

B

A

Requirement: printer

Service: printer

Figure 4.3: Unicast query, with notification for unavailable services. The Registry
notifies the User with a SrvFound message when a matching service becomes available

.

once, before assuming the Registry has crashed. When this happens, a 300D
Manager would request Registry re-election, while a 3D Manager would
restart its bounded exponential back-off announcements.

� The IamRegistry message is used to solicit registration if the Backup takes
over as the Registry with empty tables (the Registry crashes before it can
send the tables to the Backup). The Managers check the appropriate flag
in the IamRegistry announcement to determine if they need to re-register.

4.3.3 SD Discovery
There are three methods for Users to discover services: unicast query to the
Registry, multicast query, and service notification from the Registry. We discuss
each of these methods in the following.

4.3.3.1 Unicast query.

The User queries the Registry using a unicast SrvSearch message. If the service
is registered in the ServiceLookup table, the Registry returns the SD through a
SrvFound message; otherwise a SrvNotFound message is sent.

4.3.3.2 Multicast query.

When the User is unable to discover or communicate with the Registry, the User
sends a multicast SrvSearch query. The Managers with services that match the



4.3 FRODO OVERVIEW 69

requirements of the User reply with SrvFound messages.

4.3.3.3 Service notification.

The User can also request the Registry to notify it if services that match its
requirements become available in the future (the appropriate flag in the unicast
SrvSearch message is turned on). Part A of Figure 4.3 shows a scenario where
the Registry notifies the User when the required Manager registers.

Failure recovery: The Registry may not respond to the unicast SrvSearch message
because of temporary communication failures. In this case, the User sends a
multicast query to discover the required service. When the Registry receives the
multicast query from the User, the Registry replies appropriately to the query
(SrvFound or SrvNotFound message). The Registry also solicits registration from
the User to notify the User of its presence. Consequently, the User reverts to
unicast queries in the future.

4.3.4 Configuration Update

In this function, (1) the Registry automatically detects nodes that have left the
system, and (2) both the User and the Registry discover changes to cached SDs.

4.3.4.1 Configuration Purge.

This function detects nodes that have left the system through two automatic
garbage collection mechanisms:

1. Lease renewals - 300D nodes are expected to refresh their registrations pe-
riodically. Thus, a 300D node maintains a “lease” with the Registry for
every service registered. If the lease is not renewed, the Registry assumes
the node has left the system, and purges all configuration data on this node.
The lease period is requested by the Manager, according to its own criteria
(e.g. a mobile node may request a short lease period). If the lease period
exceeds the limit set in the Registry, the Registry requests the Manager to
shorten the lease period. This method is similar to leasing in Jini.

2. Polling - The Registry periodically polls 3D and 3C Managers. These nodes
need not keep track of leases as done by the 300D nodes.

Failure recovery:

� Configuration Purge is by itself the failure recovery mechanism for detecting
defunct nodes and services.



70 FRODO SYSTEM OVERVIEW 4.4

� Lease renewal and poll messages may be lost, and Managers can be wrongly
assumed to have left the system. Therefore we specify that only if two
consecutive lease renewal or poll messages are lost, the registration of the
Manager is purged.

� After the first lease renewal or poll expires, the SD is set as “inactive”. This
prevents positive replies to queries on this service.

4.3.4.2 Consistency maintenance.

This function updates cached SDs. Users subscribe to either the Registry or the
Manager to receive updates on cached SDs. There are two types of subscriptions:

1. 2-party subscription. 2-party subscription requires 300D Managers to ad-
minister the subscription, and update the Users directly.

2. 3-party subscription. 3-party subscription supports resource lean 3D and
3C Managers by delegating subscription administration to the Registry.

Once a subscription request is acknowledged, the User periodically renews its
subscription lease to indicate continuous interest to receive updates.

Failure recovery:

� As in lease renewals, the subscriber is purged by the Manager and the
Registry after two consecutive times the subscription lease period expires.

� Upon receiving SubscriptionRenewal message from a purged User, the Ma-
nager or the Registry sends a Resubscribe message so that the User can
refresh its subscription.

� The ServiceUpdate message is retransmitted (we use 4 retransmissions, as
done in TCP connection setup). Once the retransmission limit is reached
without an acknowledgement, the Manager or the Registry gives up, until
the User renews its subscription, and the update is resent.

We evaluate consistency maintenance and the recovery behaviors of FRODO,
Jini and UPnP in more detail in the next chapter.

4.4 Discussion and Conclusion
In Chapter 2, we characterize the design space for service discovery, as summarized
in Figure 2.4. In this chapter, we explore a subset of the design space, as described
in Table 4.1. This subset is defined by the requirements for our home environment
specified in Section 4.2; low cost of devices, robust, and portable design. These
requirements follow from the 3Rs in Chapter 1; reliability is satisfied because the



4.4 DISCUSSION AND CONCLUSION 71

system is robust against communication and node failures. Resource-constraints is
taken into account because the system is resource-aware (thus cost of devices are
not significantly increased). Heterogeneity of device architectures and networks is
masked by removing dependencies on the capabilities of the underlying protocol
stacks.

To satisfy the requirements, our service discovery system has the following
properties: (1) self-configuration, where the most powerful device is elected as
the Registry, and multicast communication is leveraged for detecting new enti-
ties, (2) self-healing, with various failure recovery behavior against communication
and node failures, (3) resource-aware, where devices are classified so that service
discovery tasks can be partitioned according to resource-constraints, and (4) por-
table design, where there are no dependencies on the capabilities of the underlying
protocol stacks, other than the requirement for unicast and multicast communi-
cation. As a result, we build a small-scale service discovery system that does
not require administration, supports resource-lean nodes and can be used over
heterogeneous devices and networks.

The areas in the design space that we do not explore are scalability and secu-
rity. We offer the following justifications for these omissions.

Our design does not solve scalability issues such as how the Registry can effi-
ciently process queries and cache registration data, or whether a single Registry
can cause a bottleneck. This is because we expect that there will be a limited num-
ber of devices in the home environment, where a single Registry (and a Backup)
is sufficient. A scalable design includes multiple Registries, and efficient query
mechanisms (e.g. DHTs and Bloom filters, as mentioned in Chapter 2). Scalabi-
lity is also not addressed by state of the art designs for the home, such as Jini,
SLP and UPnP. Even though Jini and SLP allow multiple Registries, Registries
do not forward queries and update each other, nor is the message transmission
optimized to support an internet scale network, unlike truly scalable systems like
INS/Twine and SDS (described in Chapter 2).

We also do not address security issues because our focus is on designing a sys-
tem that regulates itself through self-configuration and self-healing. As described
in Section 1.2, we do not address self-protection of the system. Security reduces
self-configuration, because there must be a pre-configured and trusted authority
in the system (to authenticate and authorize entities). Security also consumes re-
source due to encryption algorithms and protocols. As a consequence, the FRODO
design is vulnerable to certain types of threats (such as denial of service). The-
refore, as mentioned in our requirement analysis in Section 4.2, it is essential to
incorporate security at the application level during a full-fledged implementation
and deployment of FRODO (as also required for implementing Jini and UPnP).
Important future work in this area is to investigate how security can be integrated
into service discovery, while preserving self-configuration.

We do not investigate the best ways to implement the Service Description
(SD). We simply require that the service provides information on the device type,
service type and includes a list of attributes. For a successful implementation



72 FRODO SYSTEM OVERVIEW 4.4

of the FRODO system, a consortium such as The European Application Home
Alliance (TEAHA) [TEA04], consisting of device and application manufacturers
should standardize the SD format and values.

Having justified the omissions, we now discuss the design space that we do
explore.

To enable self-configuration, we implement Registry election. The 300D node
with the most powerful resource is elected as the Registry. We also use periodic
multicast announcements so that entities can automatically discover (or redisco-
ver) each other. We allow the role of the Registry and the Backup to be handed
over to more powerful devices that appear later in the system. This allows the
system to self-optimize so that only the most powerful nodes are given the hea-
viest tasks. The downside to Registry election is uncertain behavior of the system
during severe communication failure (such as message loss or link failures) which
causes network partitioning. When the network is partitioned, multiple Registries
can be elected at the same time. We do support this scenario by requiring the
Registries to negotiate and reelect a single Registry, when the network converges.
However, during network partitioning, Registries may not have a consistent view
of the available services, and therefore return false replies to queries from Users.
Nevertheless, by implementing both solicited and unsolicited registrations, we can
eventually regain the lost and inconsistent registration data.

Our design does not depend on the capabilities of specific protocol stacks, such
as the type of transmission (e.g. TCP, UDP), routing protocol (e.g. IP, AODV),
MAC layer (e.g. CSMA/CA in WLAN, CSMA/CD in Ethernet) and physical
layer (wired or wireless). The advantage of abstracting away the underlying pro-
tocol stacks is a portable design that can be implemented over heterogenous pro-
tocol stacks. This choice is justified because the resource-lean 3D and 3C device
classes are unable to support heavy protocol stacks, unlike the 300D device class.
Therefore, the FRODO design is appropriate for an environment such as the home
that consists of a variety of devices.

We provide failure recovery for various failure scenarios, including some which
may seem extreme (such as the Registry and the Backup failing at the same time).
However, to exclude such scenarios leads to serious consequences (e.g. no other
Registry is elected after the first crashes!). In our design, at every “if-else” fork, we
try to capture the failure scenario and provide the recovery behavior (around 20%
of the lines of code in the prototype for 300D, and 10% for 3D). This approach is
necessary, because we require both a self-configured and self-healing system. As a
result, our service discovery protocol is slightly more complex than the discovery
behavior in Jini and UPnP. Jini is a fixed Registry architecture, which requires
the Registry to be deployed by a system administrator. UPnP is an even more
straightforward design because it is a non-Registry based architecture. On the
other hand, Jini and UPnP depend on heavy protocol stacks. Thus, even with
various failure recovery mechanisms, FRODO still maintains good (and in some
cases, better) performance when compared to Jini and UPnP, and has low resource
consumption as shown in Chapter 5.



4.4 DISCUSSION AND CONCLUSION 73

The main disadvantage of designing a self-healing system is that we increase
the protocol complexity. Protocol complexity increases chances for more design
and implementation errors. Furthermore, resource consumption is also increased
to support various failure recovery mechanisms. Nevertheless, because we classify
devices based on resource constraints, most failure recovery tasks are assigned
to the powerful 300D device class. Therefore partitioning tasks across device
classes allows us to achieve robustness through 300D devices, while still allowing
resource-lean 3D and 3C devices to take part in the system. State of the art
systems like Jini and UPnP require all entities (Users, Managers and Registries)
to have the same behavior, thus excluding resource-lean nodes from taking part
in service discovery.

In the next chapter, we give our evaluation of FRODO and compare the per-
formance of FRODO against UPnP and Jini, which are two well-known state of
the art systems for the home environment.





Chapter 5
Evaluation

No amount of experimentation will ever prove me right,
but ONE experiment can prove me wrong.

Albert Einstein

5.1 Introduction
This chapter summarizes our analysis of the FRODO system. To detect and
rectify design errors, we formally verify FRODO against the Service Discovery
Principles 1 . To enhance the performance of FRODO, we benchmark through
simulation, the performance of FRODO against Jini and UPnP, during communi-
cation 2 and node failures 3 . We incorporate functionalities that provide equal,
and in some cases, better responsiveness, effectiveness and efficiency than the
competitor systems. Finally we validate that the simulation results of FRODO
and Jini are consistent with the real-life performance of these systems.

Contributions: This chapter contributes to a better understanding of the design
and analysis of service discovery systems by:

1Results have been published in Proceedings of the 30th Annual IEEE Conference on Local
Computer Networks (LCN 2005), Sydney, Australia, pp. 209-217, IEEE Computer Society
Press.

2Results have been published in Proceedings of the 1st Int. Conf. on Communication System
Software and Middleware (COMSWARE), New Delhi, India, pages to appear, IEEE Computer
Society Press.

3Results have been published in Proceedings of the 20th IEEE Int. Parallel & Distributed
Processing Symposium (IPDPS 2006), Rhodos Island, Greece, page 10pp, IEEE Computer
Society Press.

75



76 EVALUATION 5.2

1. Providing an approach for formally verifying a model of a service discovery
system against the Service Discovery Principles. FRODO is the first ser-
vice discovery system that gives a notion of correct behavior though formal
verification.

2. Identifying the failure scenarios that cause small scale, unattended service
discovery systems, with unreliable transmission to violate the Service Dis-
covery Principles, and the resulting design solutions.

3. Analyzing the effectiveness of the recovery rules implemented in UPnP, Jini
and FRODO, and comparing the overall consistency maintenance perfor-
mance of the three systems in a lossy environment.

The rest of the Chapter is organized as follows. In Section 5.2, we describe
the formal verification of FRODO, including the modeling approach, properties to
verify, and the results of the verification. In Section 5.3, we benchmark through
simulations, the models of FRODO against the models of UPnP and Jini. We
describe the modeling approach, the performance metrics, and compare the consis-
tency maintenance mechanisms in the three systems. We benchmark the models
of the three systems in two experiments with different failure types; message loss
and interface failure. We compare the effectiveness of the recovery rules presented
in Table 5.6 (in Chapter 3), that are implemented in UPnP, Jini and FRODO.
In Section 5.4, we give a brief description of our prototype, and the resources
consumed by the different device classes in FRODO. We compare the consistency
maintenance performance of our implementations of FRODO and Jini, and vali-
date the simulation results for a Registry failure scenario.

5.2 Modeling and Verification of FRODO

We use model checking [G.J03] to verify that FRODO adheres to the Service
Discovery Principles. If there are cases where the protocol fails the verification,
we identify whether the error lies in the modeling process, or in the design phase.
The former requires the model to be corrected (and often our understanding!).
However, it is the latter which is most beneficial, since detecting a design flaw leads
towards discovering design solutions that improve and strengthen the protocol,
until the Service Discovery Principles are satisfied.

We verify the desired behavioral properties of the protocol through exhaustive
enumeration (explicit or implicit) of all the states reachable by the system and the
behaviors that navigate through them, given a limited number of system scenarios
(but carefully selected based on the service discovery functions in Figure 3.4). We
use the model-checker DT-Spin [Bos97], for this purpose. DT-Spin is an extension
of the well-known SPIN tool [G.J03]. DT-Spin is used instead of the original SPIN
model checker because we need multiple timeouts that occur at any time, even if



5.2 MODELING AND VERIFICATION OF FRODO 77

other processes are still enabled in the model. Timeouts are essential requirements
for the recovery processes of the protocol against failures. The timeout variable in
standard SPIN cannot be used as it is only true when the system is idle. However,
DT-Spin also increases the state space with respect to standard Spin, because time
is modeled as ticks, and each tick occupies a state. A reasonable number of ticks
is set for each timer, to make verification feasible.

5.2.1 Modeling Approach

Protocol
specification

Protocol
abstraction

Testing:
Simulation runs
(random seed,
with increasing
message loss)

Verification

Success?Identify problem

Yes

No

Success?

No

Stop Yes

FRODO Modelling

ConfDiscMgt |= Principle 1,2 and 6

RegDisc |= Principles 3 and 5

ConfUpdate |= Principles 7 and 8

Message loss

p= []<>((|C|==1) && highestRank
&& (C(e)==G(e)) && oneBackup)

p= []<>((|C|==1) && highestRank &&
(C(e)==G(e)) && oneBackup &&
RegisteredSD=3)

p= []<>Uptodate

node failure

Step 1:
Protocol

abstraction

Step 4:
Testing: Random
simulations, with

increasing
message loss)

Success?Identify
problem

Yes

No

Success?

No

Stop Yes

Step 2: FRODO Modelling

ConfDiscPurge

SrvRegDisc

ConMain

Step 3: Message loss

Step 5: FRODO Verification
ConfDiscPurge |= P1, P2 and P5

SrvRegDisc |=  P3 and P4

ConMain |= P6 and P7

Message loss

         (no failures           |RegisteredSD(c)|=|E|
       m(=c) fails           |RegisteredSD(c)| = |E|-1
       c fails            |RegisteredSD(c’)|=|E|-1)

p=   (DiscoveredSD(u) = OfferedSD(m))

Protocol
specification

p=       ((|C|=1)     highestRank)

p=   (DiscoveredSD(u) = OfferedSD(m))

Node failure

Node failure

Figure 5.1: Modeling FRODO. The FRODO Modeling box shows the abstraction link
between the 3 modules, where the outer boxes abstract some functions from the inner
boxes. Connectivity and Global Connectivity are modeled with/without message loss re-
spectively, and Disconnect is modeled as node failure.

It is impractical to work with monolithic models of complex protocols such
as FRODO [Ruy00]. In the first place error traces would be too cluttered with
irrelevant detail to be able to spot the real problems, and secondly the state
space would grow beyond the bounds of what the current tools can cope with.
Therefore we split the FRODO protocol in a number of modules, each of which
corresponds roughly to one of the four functional areas or sub-functions thereof
(Chapter 4 describes the functions in FRODO). Each model is then provided in



78 EVALUATION 5.2

several versions, including a concrete model with the most detail, some versions
that represent worst case behavior, and a number of abstract versions with as
little detail as possible. By combining a concrete version of one module with
appropriate abstract versions of all others, the system as a whole can be verified,
focusing on the behavior of the concrete module. The main challenge of this
method is to keep the different versions of each module consistent. Figure 5.1
shows the approach that we use to model, simulate, and verify FRODO against
the Service Discovery Principles.

Step 1: Protocol abstraction. Each assembly of modules builds on a common layer
of protocol abstraction. We deliberately abstract irrelevant detail such as message
format.

Step 2: Modular decomposition. FRODO consists of three modules: a) ConfDisc-
Purge models Configuration Discovery and Configuration Management. This
module is actually broken into four sub-functions as follows: ConfDiscPurge-1
models the leader election protocol which elects one Registry. ConfDiscPurge-2
models two worst-case scenarios of the protocol with (i) all nodes claiming to be
Registry after a network partitioning, and (ii) all registration information in the
Registry being lost because of prolonged communication failure. ConfDiscPurge-
3 models a Backup taking over as the Registry when the existing Registry lea-
ves the system. This model uses node failure, instead of message loss to model
network disturbance. ConfDiscPurge-4 models the Registry handing over to a
superior node that enters late into the system. This model is an abstraction of
ConfDiscPurge-1, where message loss is already checked, and therefore not inclu-
ded in ConfDiscPurge-4. b) SrvRegDisc models both Registration and Service
Discovery functions. Configuration Discovery is abstracted away in this model,
i.e. a Registry is successfully elected. The model consists of one 300D node which
is the Registry. Service discovery is done through the Registry using the direc-
ted search mechanism, thus the service cannot be discovered unless registration
occurs. The discovery of each type of Manager (3C, 3D and 300D) is modeled
separately. c) ConMain models the Consistency Maintenance function, which
propagates updates to Users through 2-party and 3-party subscription.

Step 3: Message loss. Failure is modeled as message loss. All models except
ConfDiscPurge-3 and ConfDiscPurge-4 are simulated and verified with and wi-
thout message loss. A receiver will continue executing its tasks, unaware of any
message loss, which may lead towards a violation of the Service Discovery Prin-
ciples. We use a counter for every message type, which increments whenever a
particular type of message is lost. The message may be lost, until a constant
MAX LOSS for its type is reached. The following is an example of how a SrvRe-
gReq message is sent or lost. The variables rcvrID, OfferedSD, and srcID are the



5.2 MODELING AND VERIFICATION OF FRODO 79

receiver node’s identifier, the service identifier that represents a service and the
sender node’s identifier respectively.

if
:: loss_counter[type]<= MAX_LOSS ->

lossCounter[type]++
/ * transmit message * /
:: send!SrvRegReq,OfferedSD,srcID,rcvrID;
fi

Message loss increases the number of states because of the additional counter
and timing variables and non-deterministic choice. The impact of message loss
on the verification is shown in Table 5.1. In the example, when MAX LOSS > 1,
state space explosion causes the model-checker to halt due to machine memory
limitation (we use machines with available memory of 20GB).

Table 5.1: An example of the impact of message loss on state space. In this example,
when MAX LOSS > 1, the verification halts because of machine memory limitation.

Model State vector
(bytes)

Depth States stored

ConfDiscPurge-1, ex-
haustive mode, no mes-
sage loss

304 37328 38345

ConfDiscPurge-1,
supertrace mode,
MAX LOSS=1

308 61993 497,662 billion

Step 4: Testing. We use the simulator tool in DT-Spin to test and debug the mo-
dels. We test different, random simulation scenarios and increase the MAX LOSS
for every simulation (up to 10 message losses to capture extreme scenarios)

Step 5: Verification. DT-Spin checks correctness claims that are generated from
logic formulas expressed in LTL. When a claim is invalid for a model, the tool
produces a counter example that explicitly shows how the property was violated.
The counter example is a feedback for the simulator tool of DT-Spin to show the
execution trail that causes the violation.

5.2.2 Property Modeling

We now model the desired behavioral properties of FRODO. We use the parame-
ters and notations defined in Section 3.2.3 of Chapter 3 to model the properties
of FRODO. The interpretations of the protocol-dependent parameters, described
in Section 3.2.2 of Chapter 3 are:



80 EVALUATION 5.2

1. Connectivity condition: Conn(e, e′) : if a message is transmitted from either
e to e′, or vice versa, and the expected acknowledgement arrives, the entities
are reachable.

2. Disconnect condition: ¬Conn(e, e′) : for twice the timeout period (as explai-
ned in Section 4.3.4, Chapter 4).

3. Rank(·), the function used in Registry election, that returns the highest
ranked 300D node as the Registry (as explained in Section 4.3.1, Chapter 4).

4. G(e) = E the nodes are interested in any Registry as there is only a single
Registry in FRODO.

5. N = 1, a single Registry is elected.

We model the response pattern �(p′ → ♦p) (described in Chapter 3), by buil-
ding the property p′ directly into the models, so that p is verified as a recurrence
property [G.J03]. The recurrence property �♦p states that if the state formula, p
happens to be false at any given point in a run, it is always guaranteed to become
true again if the run is continued. For p′ = Global Connectivity, we verify p in a
model without any message loss. For p′ = Connectivity, we verify p in a model
with a limit on message loss. For p′ = Disconnect, we verify p in a model with
node failure.

The descriptions of each property, p are given below. For the purpose of
readability, we left out some technical details. For more details, we recommend
the DT-Spin models of FRODO 1 .

ConfDiscPurge |= P1 ∧ P2 ∧ P5

In this property, the number of entities in the system varies according to node
failures (e.g. node crashes). We use |E| to represent the original number of nodes
in the system, before a node failure occurs.

For P1, all entities have to agree on the highest ranking node, say c, becoming
the single Registry. For P2, all nodes must discover this Registry (and no others).
In the verification we check |RegisteredSD(c)| = |E|, which implies that each
node m has registered at c. In this model, the Manager offers exactly one service.
The Manager discovers the Registry, and registers. For P5, the Registry purges
the service registration of disconnected nodes. Thus, |RegisteredSD(c)| = |E| − 1.
If the failing node is the Registry itself then the Backup c′, which is the second
highest ranking node, must detect this and take over as the new Registry, resul-
ting in |RegisteredSD(c′)| = |E|−1. Thus, for the ConfDiscPurge module, we check
the following property (each line is checked separately, in different models)

p := �♦(|C| = 1 ∧ highestRank) ∧ / ∗ P1 ∗ /

1Frodo Dt-Spin Models, version 1.0. Technical Report TR-CTIT-06-27, published at
http://eprints.eemcs.utwente.nl/2715, Enschede, June 2006.



5.2 MODELING AND VERIFICATION OF FRODO 81

�♦( no failures → |RegisteredSD(c)| = |E|) ∧ / ∗ P2 ∗ /
�♦( m(6= c) fails → |RegisteredSD(c)| = |E| − 1) ∧ / ∗ P5 ∗ /
�♦( c fails → |RegisteredSD(c′)| = |E| − 1) / ∗ P5 ∗ /

Together with some basic properties of the behavior of each of the nodes (e.g.
discovering only one Registry), it is sufficient to obtain that P1, P2 and P5 all
hold.

SrvRegDisc |= P3 ∧ P4

We consider the situation where a User u is interested in the service that is offered
by some Manager m in the system, Requirement(u) = OfferedSD(m). We verify
the property

p := �♦(DiscoveredSD(u) = OfferedSD(m))

Which gives that services can be found (P4) and also that services are registered
(P3) as the User can only discover registered services.

ConMain |= P6 ∧ P7

We consider the situation where the service at m discovered by a User u chan-
ges but still satisfies the requirements of the User. To satisfy P6 and P7, the
User has to update its discovered services to remain consistent with the Manager,
Uptodate(u,m). This is implied by DiscoveredSD(u) = OfferedSD(m). We again
check the property

p := �♦(DiscoveredSD(u) = OfferedSD(m))

where the value of OfferedSD(m) is changed after a waiting period, during the
verification.

5.2.3 Verification Results

As shown in Figure 5.2, a service discovery function oscillates between the ideal
state, and the non-ideal state, where communication or node failure is the trigger
for the transition. For example, a node can successfully discover the Registry, but
fail to register when the registration message is lost. Thus the Registry Setup and
Configuration Discovery Principles are satisfied, but the Registration Principle is
violated. The system must ensure that the Registration function can return to
the ideal state, and satisfy the principle.

We find formally verifying a model of a lossy service discovery system a critical
step in the design phase. This is because formal verification reveals design errors



82 EVALUATION 5.2

Ideal state Non-ideal state

Failure recovery 

Failure

Figure 5.2: States of a service discovery function. The ideal state for a function has
no failure, and the function performs correctly. In the non-ideal state, the function may
perform incorrectly. But when the failure ends, the service discovery function should
eventually recover from failures and return to the ideal state.

that cause the Service Discovery Principles to be violated. These errors may not
be detected by simulating FRODO, or by testing the prototype.

We first give the analysis on the failure scenarios, before giving the results of
our verification.

Table 5.2 lists the discovered failure scenarios that cause the Service Discovery
Principles to be violated. For each failure scenario, we give the design solution that
solves the failure in our FRODO models. The failure scenarios are relevant for any
small-scale, unattended system with auto-configured Registries, with unreliable
transmission.

We summarize the verification settings, and the results for each module in
Table 5.3. In total, we developed and verified 21 models, out of which, 17 mo-
dels achieved Exhaustive coverage (100% coverage of all reachable states for a
model), while 4 models had to be run under the Supertrace mode (uses bit state
hashing [G.J98], with coverage around 98%) because of state space explosion.



5.2 MODELING AND VERIFICATION OF FRODO 83

T
a
b
le

5
.2

:
S
u
m

m
a
ry

o
f

fa
il
u
re

sc
en

a
ri

o
s

th
a
t

vi
o
la

te
th

e
S
er

vi
ce

D
is

co
ve

ry
P
ri

n
ci

p
le

s,
a
n
d

th
e

re
su

lt
in

g
d
es

ig
n

so
lu

ti
o
n
s.

T
h
e

“
R
ef

”
co

lu
m

n
is

u
se

d
in

T
a
bl

e
5
.3

to
re

fe
r

to
th

e
d
es

ig
n

so
lu

ti
o
n
s

in
co

po
ra

te
d

in
th

e
m

od
el

s.

R
e
f

F
a
il
u
r
e

sc
e
n
a
r
io

S
c
e
n
a
r
io

d
e
sc

r
ip

ti
o
n

P
r
in

c
ip

le
s

v
io

la
te

d
D

e
si

g
n

so
lu

ti
o
n

A
M

o
r
e

th
a
n

th
e

r
e
q
u
ir

e
d

N
R

e
-

g
is

tr
ie

s
a
r
e

e
le

c
te

d
.

N
et

w
o
rk

p
a
rt

it
io

n
in

g
ca

u
se

s
m

u
lt
ip

le
R

e-
g
is

tr
ie

s
to

b
e

el
ec

te
d
.

T
h
e

sy
st

em
m

u
st

ev
en

tu
a
ll
y

co
n
v
er

g
e

to
N

R
eg

is
tr

ie
s.

R
eg

is
tr

y
S
et

u
p
,

C
o
n
fi
g
u
ra

ti
o
n

D
is

co
v
er

y.

T
h
e

R
eg

is
tr

y
u
se

s
pe

ri
od

ic
pa

ss
iv

e
d
is
co

ve
ry

to
d
et

ec
t

o
th

er
R

eg
is

tr
ie

s,
a
n
d

n
eg

o
-

ti
a
te

to
sa

ti
sf

y
th

e
v
a
lu

e
o
f

N
.

B
P
e
r
m

a
n
e
n
t

R
e
g
is

tr
y

fa
il
u
r
e

c
a
u
se

s
th

e
M

a
n
a
g
e
r

to
n
e
v
e
r

b
e

d
is

c
o
v
e
r
e
d
.

T
h
e

R
eg

is
tr

y
fa

il
s

a
ft
er

a
ck

n
o
w

le
d
g
in

g
th

e
re

g
is

tr
a
ti

o
n
,

a
n
d

be
fo

re
u
p
d
a
ti
n
g

a
B

a
ck

u
p
.

W
h
en

th
e

re
g
is

tr
a
ti
o
n

is
a
ck

-
n
o
w

le
d
g
ed

,
th

e
M

a
n
a
g
er

k
ee

p
s

re
n
ew

in
g

it
s
le

a
se

,
b
u
t
d
o
es

n
o
t
d
et

ec
t
th

a
t
th

e
R

e-
g
is

tr
y

is
n
o

lo
n
g
er

a
v
a
il
a
b
le

.

C
o
n
fi
g
u
ra

ti
o
n

D
is

co
v
er

y,
R

e-
g
is

tr
a
ti
o
n
,

S
D

D
is

co
v
er

y.

T
h
e

M
a
n
a
g
er

ca
ch

es
R
eg

is
-

tr
y

in
fo

rm
a
ti
o
n
,
a
n
d

in
it

ia
-

te
s

u
n
so

li
ci

te
d

re
gi

st
ra

ti
o
n

to
u
n
k
n
o
w

n
R

eg
is

tr
ie

s.

C
T
e
m

p
o
r
a
r
y

R
e
g
is

tr
y

fa
il
u
r
e

a
n
d

c
a
c
h
e
d

R
e
g
is

tr
y

in
fo

r
m

a
-

ti
o
n

c
a
u
se

s
th

e
M

a
n
a
g
e
r

to
b
e

n
e
v
e
r

d
is

c
o
v
e
r
e
d
.

T
h
e

R
eg

is
tr

y
re

co
ve

rs
fr

o
m

fa
il
u
re

,
b
u
t

h
a
s
p
u
rg

ed
th

e
in

fo
rm

a
ti
o
n

o
n

th
e

M
a
n
a
-

g
er

.
T

h
e

M
a
n
a
g
er

d
o
es

n
o
t

a
tt

em
p
t

to
re

-r
eg

is
te

r
u
p
o
n

re
ce

iv
in

g
th

e
a
n
n
o
u
n
ce

-
m

en
t

o
f
th

e
R

eg
is

tr
y,

b
ec

a
u
se

it
h
a
s

p
re

-
v
io

u
sl

y
ca

ch
ed

th
e

R
eg

is
tr

y
in

fo
rm

a
ti
o
n
,

a
n
d

a
ss

u
m

es
it
s

re
g
is

tr
a
ti
o
n

is
st

il
l
v
a
li
d
.

C
o
n
fi
g
u
ra

ti
o
n

D
is

co
v
er

y,
R

e-
g
is

tr
a
ti
o
n
,

S
D

D
is

co
v
er

y.

T
h
e

R
eg

is
tr

y
in

it
ia

te
s

so
li
-

ci
te

d
re

gi
st

ra
ti
o
n

to
d
et

ec
t

p
u
rg

ed
M

a
n
a
g
er

s.

D
U

p
d
a
te

is
u
n
su

c
c
e
ss

fu
l,

w
h
e
n

th
e

M
a
n
a
g
e
r

o
r

th
e

R
e
g
is

tr
y

g
iv

e
s
u
p

r
e
tr

a
n
sm

it
ti
n
g

th
e

n
o
-

ti
fi
c
a
ti

o
n
.

C
o
n
ti

n
u
o
u
s

co
m

m
u
n
ic

a
ti
o
n

o
r

n
o
d
e

fa
i-

lu
re

ca
u
se

th
e

M
a
n
a
g
er

o
r

th
e

R
eg

is
tr

y
to

st
o
p

re
tr

a
n
sm

it
ti
n
g

th
e

u
p
d
a
te

a
ft

er
th

e
m

a
x
im

u
m

n
u
m

b
er

o
f

re
tr

a
n
sm

is
si

o
n

is
re

a
ch

ed

2
-p

a
rt

y
a
n
d

3
-p

a
rt

y
C

o
n
si

s-
te

n
cy

M
a
in

te
-

n
a
n
ce

.

T
h
e

M
a
n
a
g
er

re
tr

a
n
sm

it
s

th
e

u
p
d
a
te

n
o
ti
fi
ca

ti
o
n

u
n
-

ti
l

su
cc

es
sf

u
l

(c
ri

ti
ca

l
u
p
-

d
a
te

),
o
r

re
tr

ie
s

th
e

u
p
d
a
te

in
th

e
fu

tu
re

(n
o
n
-c

ri
ti

ca
l

u
p
d
a
te

)



84 EVALUATION 5.2

Table 5.3: Verification results. The “success” results are obtained after correcting the
failures using the design solutions from Table 5.2.

Module Principle Results
ConfDiscPurge Registry Setup, Registry Dis-

covery, Configuration Purge
Success, after implementing
design solutions A, B and C

SrvRegDisc Registration, SD Discovery Success
ConMain 2-party and 3-party Consis-

tency Maintenance
Success, after implementing
design solution D

Verify models during
unconnected state

Disconnect check on all prin-
ciples.

Success. Principles still hold

5.2.4 Discussion

The results of the verification depend on the accuracy of the models, and deve-
loping good models is an art [Bri02]. To ensure trustworthiness of the results,
our models share the relevant properties with the original system, and maintain
the structural similarity between the model and the system. We have made every
effort to make our models as accurate as possible. However, we have had to make
a number of simplifying assumptions: (1) the nodes provide correct information,
(2) message losses are low, (3) the system does not require a fixed time constraint
on satisfying the Service Discovery Principles, and (4) the system faces only the
selected scenarios that we model. Based on these assumptions, the results show
that FRODO guarantees that the functions of service discovery meet their ob-
jectives under the condition that nodes are able to communicate eventually. The
results of the verification increases confidence in FRODO’s capabilities.

In practical implementations, a protocol that violates some of the Service Dis-
covery Principles can address its incompleteness through network and application
layers. For example in SLP, the Configuration Update function is not imple-
mented completely (Users are not automatically updated through notification).
Service update has to be done through the application layer, where interested
Users must periodically poll the Manager to receive service changes. In Jini, de-
tection of disconnected nodes is mostly handled by the TCP layer (retransmission
and acknowledgement). This creates a dependency on a reliable communication
channel and restricts Jini to certain types of network. Therefore, delegating tasks
away from the service discovery layer as done in SLP and Jini creates dependen-
cies on other protocol layers. This leaves the system vulnerable to ambiguous
interpretation by application developers on failure response.

The successful verification of FRODO models against the Service Discovery
Principles does not necessarily mean that its performance is superior compared
to other systems. We need to compare our design choices with other well-known
systems like UPnP and Jini, so that we can improve the performance of FRODO



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 85

in terms of delay, effectiveness and efficiency, when the system faces failures. The
next section evaluates the performance of FRODO.

5.3 Performance Benchmark through Simulations
In this section, we show that our design choices allow FRODO to perform better
than well-known systems like UPnP and Jini, in the home context. We focus on
the performance of consistency maintenance in the three systems during commu-
nication and node failures. The ability to recover from failures during consistency
maintenance depends on the overall strength of the service discovery system. Our
analysis also gives insight into the effectiveness of the recovery rules presented in
Chapter 3.

5.3.1 Consistency Maintenance In Jini, UPnP and FRODO
Consistency maintenance involving three types of communicating entities (Ma-
nager, User and Registry) is known as 3-party subscription. Consistency main-
tenance involving only two types of entities (without the Registry) is known as
2-party subscription.

Jini uses 3-party subscription. The Manager sends an update to the Regis-
try, and receives an acknowledgement. The Registry propagates the update to
the subscribed Users. In UPnP, the Manager sends update notifications to the
subscribed Users through 2-party subscription. The notification (an invalidation
message) indicates only that the service has changed. A User receives the actual
update after it requests the change. In both Jini and UPnP, a message is sent only
if the reliable transmission using TCP successfully sets up a connection between
the sender and the receiver. Messages for setting up the connection and notifying
the update are acknowledged and retransmitted, as part of the TCP behavior.

FRODO with 3-party subscription supports resource lean 3D and 3C Mana-
gers, while 2-party subscription is used for 300D Managers. The task of maintai-
ning subscriptions for resource-lean Managers is delegated to the Registry, so that
the Manager needs only to notify the Registry if its service changes. The Registry
notifies the subscribers when the Manager sends an update. In both subscripti-
ons, every update message sent by the Registry and Manager is acknowledged.
This is still a smaller overhead compared to that incurred by reliable transmission
used by Jini and UPnP, as shown in Table 5.4.



86 EVALUATION 5.3

T
a
b
le

5
.4

:
C

o
m

pa
ri

so
n

o
f
st

a
te

o
f
th

e
a
rt

co
n
si

st
en

cy
m

a
in

te
n
a
n
ce

m
ec

h
a
n
is

m
s

a
n
d

re
co

ve
ry

ru
le

s.
T

h
e

d
es

cr
ip

ti
o
n

o
f
th

e
re

co
ve

ry
ru

le
s

is
p
re

se
n
te

d
in

C
h
a
p
te

r
3
,
S
ec

ti
o
n

3
.3

C
o
n
si

st
e
n
c
y

m
a
in

te
-

n
a
n
c
e

m
e
c
h
a
n
is

m
s

a
n
d

r
e
c
o
v
e
r
y

r
u
le

s

U
P

n
P

J
in

i
F
R

O
D

O

S
u
b
sc

r
ip

ti
o
n

ty
p
e

2
-p

a
rt

y
su

b
sc

ri
p
ti

o
n

3
-p

a
rt

y
su

b
sc

ri
p
ti

o
n

3
-p

a
rt

y
su

b
sc

ri
p
ti
o
n

(3
C

/
3
D

M
a
n
a
g
er

),
2
-p

a
rt

y
su

b
sc

ri
p
-

ti
o
n

(3
0
0
D

M
a
n
a
g
er

)
C

o
n
fi
g
u
r
a
ti

o
n

m
a
in

te
-

n
a
n
c
e

m
e
c
h
a
n
is

m
C

M
1
,
C

M
2

C
M

1
,
C

M
2

C
M

1
,
C

M
2

S
u
b
sc

r
ip

ti
o
n
-r

e
c
o
v
e
r
y

r
u
le

s
S
R

C
1
(T

C
P

-d
ep

en
d
en

t)
,

S
R

N
1
(T

C
P

-d
ep

en
d
en

t)
S
R

N
1
(T

C
P

-d
ep

en
d
en

t)
,

S
R

C
1
(T

C
P

-d
ep

en
d
en

t)
,

S
R

C
2

S
R

N
1
,
S
R

N
2
,
S
R

C
1
,
S
R

C
2

P
u
r
g
e
-r

e
c
o
v
e
r
y

r
u
le

s
P

R
4
,
P

R
5

P
R

1
,
P

R
2
,
P

R
3

3
-p

a
rt

y
su

b
sc

ri
p
ti
o
n
:

P
R

1
,

P
R

3
,

P
R

5
(a

p
p
li
ca

ti
o
n

d
e-

p
en

d
en

t)
.

2
-p

a
rt

y
su

b
sc

ri
p
-

ti
o
n
:

P
R

1
,

P
R

4
,

P
R

5
(a

p
p
-

li
ca

ti
o
n

d
ep

en
d
en

t)
N

u
m

b
e
r

o
f
u
p
d
a
te

m
e
s-

sa
g
e
s,

fo
r

N
U

se
r
s,

1
R

e
g
is

tr
y
,

a
n
d

1
M

a
n
a
-

g
e
r

w
h
e
n

th
e
r
e

a
r
e

n
o

fa
il
u
r
e
s

3
N

(n
o
R

eg
is

tr
y
)

N
+

2
.

If
U

se
rs

a
n
d

M
a
n
a
-

g
er

s
a
re

re
g
is

te
re

d
w

it
h

y
R

e-
g
is

tr
ie

s:
y
(N

+
2
)

N
+

2
,

b
ec

a
u
se

th
er

e
is

o
n
ly

o
n
e

R
eg

is
tr

y



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 87

5.3.2 Recovery Rules in Jini, UPnP and FRODO

As explained in Chapter 3, during short-term failures, entities that fail to
update each other have to recover through the still valid subscription process.
This is known as subscription-recovery. Continuous, long-term failures cause the
subscription leases to expire, and entities purge the knowledge of each other.
Entities use the Configuration Discovery, Registration and SD Discovery functions
to rediscover the purged entities, and regain consistency. This is known as purge-
recovery.

The type of recovery rule used by a system during purge-recovery depends on
whether the architecture of the system is non-Registry or Registry-based. The
competence of the systems in performing consistency maintenance rely upon how
the systems actually implement the recovery rules. For example, as seen from
Table 5.4, both UPnP and FRODO with 3-party subscription implement PR5,
but Users use different approaches in how they rediscover the Manager; UPnP
uses multicast User queries and Manager announcements, while FRODO uses
unicast queries to the Registry, before trying multicast queries. We analyze the
differences in implementation in Section 5.3.5.

Table 5.4 also shows that FRODO is unique because it supports both 2-party
and 3-party subscriptions. FRODO is also the only protocol to support SRN2,
where the Manager retries an unsuccessful update when it receives a subscription
renewal message from the User. In small scale systems, FRODO with a single
Registry is the most efficient protocol, because it propagates the least number of
messages to get N Users updated. This is because FRODO is a single Registry ar-
chitecture, which uses inexpensive UDP, and propagates the updated data, unlike
TCP-based UPnP (which uses invalidation), and Jini (which becomes inefficient
with redundant Registries).

5.3.3 Performance Metrics

We can benchmark the consistency maintenance performance of state of the art
service discovery systems by using the Update Metrics, developed by Dabrowski
and Mills [Dab02b]. The Update Metrics measure the consistency maintenance
performance of service discovery systems against a particular failure rate.

Below, we give the general definitions used in the Update Metrics.

Definition 2: We use two types of failure models: message loss and interface
failure. The failure rate, λ (0 ≤ λ ≤ 1) is defined as:

1. Message loss rate: number of messages lost compared to the total number
of messages propagated in the system during the lifetime of the system, D,
or



88 EVALUATION 5.3

2. Interface failure rate: proportion of time that a node is unable to commu-
nicate during the lifetime of the system, D.

Definition 3: Let X be the number of runs repeated in the experiment, N the
number of Users in the system, C(i)(< D) the time when the service changes,
and U(i, j, λ) the time a User receives the update and reaches consistency, where
j ∈ 1...N , and i ∈ 1...X.

We now give the Update Metrics. The results (data points in the graphs) for
Update Effectiveness, Update Efficiency and Efficiency Degradation are averaged
over j ∈ 1..N and i ∈ 1..X. Update Responsiveness uses median calculation to
eliminate biasing from extreme scenarios where only messages from the Manager
or the Registry are lost (outliers), unlike the mean calculation.

1. Update Responsiveness, R(λ). Measures the ratio of the time left after
the update is propagated to a User, before a deadline, D compared to the
total time available for the Manager to propagate the update before D.

Update Responsiveness, R(λ) is the median of 1− L(i, j, λ),

taken over j ∈ 1..N and i ∈ 1..X.

where Relative change-propagation latency, L(i, j, λ) =
U(i, j, λ)− C(i)

D − C(i)

2. Update Effectiveness, F (λ). Measures the average probability of success
for a User to reach consistency.

Update Effectiveness, F (λ) =

X∑
i=1

N∑
j=1

chg(i, j, λ)

X.N

where chg(i, j, λ) =

{
1 : U(i, j, λ) < D

0 : otherwise

3. Update Efficiency, E(λ). Measures the effort required to maintain con-
sistency. Let m be the minimum number of messages across all systems to
propagate a change to the Users. Let y(i, λ) be the total number of messa-
ges for all Users to regain consistency in the system (therefore, this metric
only depends on i and λ). The Update Efficiency, E(λ) is the ratio of m to
y(i, λ), averaged over the number of runs.

Update Efficiency, E(λ) =

X∑
i=1

[m/y(i, λ)]

X



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 89

where m is the minimum number of messages across all systems to propagate
a change to the Users, and y is the total number of messages propagated in
the system during inconsistency.

The Update Efficiency metric fixes the minimum number of messages, m
and requires all protocols to base their efficiency measurement against the
protocol which is the most efficient at 0% failure rate. This gives the proto-
cols that exhibit the value of m an advantage over other protocols. However,
the metric does not reflect how the protocols perform when the failure rate
increases. It is possible that a protocol that propagates more messages at
0% failure rate degrades slower than the baseline protocols at higher fai-
lure rates. This leads us to consider the degradation of efficiency as a new
metric.

4. Efficiency Degradation, G(λ). We make a simple modification to the
Update Efficiency metric by replacing m with a protocol’s own minimum
number of messages to propagate the update, m′. This metric permits
a more accurate evaluation of protocol efficiency because it reflects how
heavily the protocol has to propagate messages as failure rate increases, to
ensure that all Users achieve consistency.

Efficiency Degradation, G(λ) =

X∑
i=1

[m′/y(i, λ)]

X

where m′ is the system’s own minimum number of messages to propagate
the update

5.3.4 Modeling Approach
We use Rapide [Luc98], an Architectural Description Language and tool suite to
build an executable model of FRODO. Rapide is designed to support component-
based development of systems by utilizing architecture definitions as the develop-
ment framework. It offers an event-based execution for distributed, time-sensitive
systems.

We benchmark a total of four models: (1) UPnP, (2) Jini with 1 Registry,
(3) FRODO with 3-party subscription using 1 300D node as the Registry and
(4) FRODO with 2-party subscription, using 8 300D nodes (but still a single
Registry system). Our model of FRODO with 2-party subscription contains only
300D nodes, because the nodes have resources similar to the nodes in Jini and
UPnP. We reproduce the results of UPnP and Jini models by Dabrowski and
Mills.

We now simulate the models with two types of failures: (1) communication
failure modeled as message loss, and (2) node failure modeled as interface failure
(receiver and/or transmitter failure). The following steps describe our approach.



90 EVALUATION 5.3

Step 1: Modeling FRODO. Since FRODO and Jini are both Registry-based archi-
tectures, we build our FRODO model based on the Jini model by Dabrowski and
Mills. The class diagrams in Figure 5.3 and 5.4 show the difference in the structure
of our FRODO model against the Jini model. The main challenge in modeling
FRODO is in developing a framework of behaviors for User and Manager, ac-
cording to the type of device class. In UPnP and Jini, nodes are homogenous,
allowing more straightforward models. In our simulations, we do not include 3C
Managers because they behave exactly the same as 3D Managers during consis-
tency maintenance.

Device
(abstract)

Registry ManagerUser

Figure 5.3: In the Jini model from NIST, a device can instantiate as a User, a Manager,
or a Registry. The Registry component is only relevant for Jini).

Manager
(abstract)

Manager
300D

Manager
3C

User
3D

User
300D

User
(abstract)

Device
(abstract)

Registry

3C3D300D
Manager

3D

1

1111 1

Figure 5.4: In the FRODO model, a device can instantiate as a 3C, 3D or 300D class.
A 300D node has a Registry component which performs Registry election, and which is
triggered when it is elected as the Registry. 300D and 3D nodes can instantiate as a User
and a Manager, while 3C nodes are only Managers. The User and Manager behaviors
are tailored according to the device class limitations.

Step 2: Constructing the failure response of transmission protocols. All three models
use unreliable multicast transmission (UDP). For unicast transmission, FRODO
also uses inexpensive UDP, while Jini and UPnP use reliable unicast transmission
(TCP). In UDP, when a message is discarded, the source does not learn of the
loss. In TCP, a Remote Exception (REX) is sent to the service discovery layer



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 91

of UPnP and Jini when an acknowledgement is not received after retrying and
waiting, as explained further in Table 5.5.

Table 5.5: Network characteristics. UPnP and Jini rely on notifications from the trans-
port layer to detect transmission failures. FRODO does not rely on lower layers to detect
failures. Redundant multicast transmissions also do not occur in FRODO because it does
not fit the resource-aware context.

Network behavior and
failure response

UPnP and Jini FRODO

Multicast UDP UDP
Unicast TCP UDP
Transmission delay 0.14s-0.42s 0.14s-0.42s
Unreliable protocol
(UDP) response to mes-
sage loss

No retransmission of lost messages,
or acknowledgements. Redundant
6 times transmission for all UDP
messages

Selected messages
are retransmitted
and acknowledged.

Reliable protocol (TCP)
to message loss

Connection setup: 4 retransmis-
sion attempts with delays 6s, 24s,
24s, 24s, then REX if unsuccessful.
Data transfer: retransmit until suc-
cess, increasing, timeout by 25% on
each retry (first time-out is round
trip time)

-

Step 3: Constructing the service discovery behavior and recovery rules. In our UPnP
scenario, the Manager sends 6 multicast announcement messages every 1800s. In
Jini, the Registry sends 6 multicast announcements messages every 120s, while
in FRODO, the Registry sends 2 multicast announcements every 1200s. We re-
commend 1200s for the Registry announcement period in FRODO (longer than
in Jini), to avoid unwarrented Registry election that degrades efficiency, and con-
sumes additional resources. This is because 300D nodes monitor the Registry’s
announcements, and random, short term Registry failure or message loss causes
300D nodes to restart Registry election. We also allow the Registry to announce
itself only twice at a time, to conserve resources of both the Registry and receiving
nodes. In short, we deliberately put our FRODO simulation at a disadvantage
against the Jini and UPnP simulations, to conserve resources.

In Jini and FRODO, when the Registry is purged, the Manager rediscovers
the Registry by listening for the Registry announcements. FRODO also requires
3D Managers to announce their presence periodically until the Registry is dis-
covered. 300D Managers multicast announcements to start the Registry election
process to setup the Registry. We deliberately model FRODO parameters to re-
flect resource-awareness by not requiring all messages to be retransmitted and
acknowledged (only a selected few). We set the period of the Registry announ-



92 EVALUATION 5.3

cements so that it is short enough for the discovery process, but long enough so
that severe interface failures at high failure rates do not imbalance the system by
continuously restarting the Registry election process.

The registration/advertisement lease period (the period where the service re-
mains valid in the cache of the Registry or the User) is set to 1800s for all three
protocols. In UPnP and FRODO with 2-party subscription, the User subscribes
to a discovered Manager. The subscription lease (the period where the User is
interested in receiving updates) is renewed every 1800s for both systems.

Table 5.6 compares the recovery rules in the models, and shows the differences
in implementation. Compared to Jini, FRODO has stronger implementation of
the recovery rules. UPnP uses PR5 because it is a non-Registry based architec-
ture, thus it uses multicast service advertisements.



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 93
T
a
b
le

5
.6

:
R
ec

o
ve

ry
ru

le
s,

a
s

im
p
le

m
en

te
d

in
th

e
U

P
n
P
,
J
in

i
a
n
d

F
R
O

D
O

m
od

el
s.

F
o
r

th
e

m
es

sa
ge

lo
ss

ex
pe

ri
m

en
t,

w
e

o
n
ly

u
se

th
e

si
n
gl

e
R
eg

is
tr

y
to

po
lo

gy
o
f
J
in

i.
T

h
e

gr
a
y

a
re

a
s

in
d
ic
a
te

st
ro

n
ge

r
im

p
le

m
en

ta
ti
o
n

o
f
th

e
re

co
ve

ry
ru

le
.

.

C
o
n
si

st
e
n
c
y

m
a
in

te
n
a
n
c
e

r
e
c
o
v
e
r
y

r
u
le

s
U

P
n
P

J
in

i
F
R

O
D

O

T
o
p
o
lo

g
y

1
M

a
n
a
g
er

,
5

U
se

rs
T

w
o

to
p
o
lo

g
ie

s.
(a

)
1

R
eg

is
tr

y,
1

M
a
n
a
g
er

,
5

U
se

rs
,
(b

)
2

R
eg

is
-

tr
ie

s,
1

M
a
n
a
g
er

,
5

U
se

rs

T
w

o
to

p
o
lo

g
ie

s.
(a

)
1

3
0
0
D

R
eg

is
-

tr
y,

1
3
D

M
a
n
a
g
er

,
5

3
D

U
se

rs
(b

)
1

3
0
0
D

R
eg

is
tr

y,
1

3
0
0
D

M
a
n
a
g
er

,
5

3
0
0
D

U
se

rs
,
1

3
0
0
D

B
a
ck

u
p

S
R

N
1
:

R
e
tr

a
n
sm

is
si

o
n
s

a
n
d

a
c
k
n
o
w

le
d
g
e
m

e
n
ts

T
C

P
en

a
b
le

s
S
R

N
1

T
C

P
en

a
b
le

s
S
R

N
1

R
et

ra
n
sm

is
si

o
n
s

a
n
d

a
ck

n
o
w

le
d
g
e-

m
en

ts
o
f
se

le
ct

ed
m

es
sa

g
es

S
R

N
2
:

R
e
tr

y
o
n

u
n
su

c
-

c
e
ss

fu
l
n
o
ti
fi
c
a
ti
o
n

-
-

M
a
n
a
g
er

in
2
-p

a
rt

y
su

b
sc

ri
p
ti
o
n

re
-

tr
ie

s
u
p
d
a
te

n
o
ti
fi
ca

ti
o
n

w
h
en

it
re

-
ce

iv
es

su
b
sc

ri
p
ti

o
n

re
n
ew

a
ls

fr
o
m

in
-

co
n
si

st
en

t
U

se
rs

P
R

1
:

T
h
e

M
a
n
a
g
e
r

r
e
-

r
e
g
is

te
r
s,

a
n
d

th
e

R
e
g
is

tr
y

n
o
ti

fi
e
s

th
e

U
se

r

-
U

se
rs

a
re

n
o
ti
fi
ed

w
h
en

th
e

M
a
-

n
a
g
er

re
g
is

te
rs

in
th

e
fu

tu
re

.
U

se
rs

a
re

n
o
ti
fi
ed

if
th

e
M

a
n
a
g
er

is
a
v
a
il
a
b
le

o
r

re
g
is

te
rs

in
th

e
fu

tu
re

P
R

2
:

T
h
e

U
se

r
q
u
e
r
ie

s
th

e
r
e
d
is

c
o
v
e
r
e
d

R
e
g
is

tr
y

fo
r

se
r
v
ic

e

-
U

se
rs

q
u
er

y
fo

r
th

e
se

rv
ic

e
w

h
en

th
e

R
eg

is
tr

y
is

re
d
is

co
v
er

ed
-

P
R

3
:

T
h
e

R
e
g
is

tr
y

r
e
d
is

-
c
o
v
e
r
s

th
e

U
se

r
,

a
n
d

r
e
-

q
u
e
st

s
r
e
su

b
sc

r
ip

ti
o
n

-
T

h
e

R
eg

is
tr

y
re

sp
o
n
d
s

to
a
n

u
n
-

k
n
o
w

n
U

se
r

w
it
h

a
n

er
ro

r
m

es
-

sa
g
e

th
a
t

re
q
u
ir

es
th

e
U

se
r

to
re

-
d
is

co
v
er

th
e

R
eg

is
tr

y

T
h
e

R
eg

is
tr

y
re

q
u
es

ts
th

e
U

se
r

to
re

-
su

b
sc

ri
b
e

P
R

4
:

T
h
e

M
a
n
a
g
e
r

r
e
d
is

-
c
o
v
e
r
s

th
e

U
se

r
,

a
n
d

r
e
-

q
u
e
st

s
r
e
su

b
sc

r
ip

ti
o
n

T
h
e

M
a
n
a
g
er

re
q
u
es

ts
p
u
rg

ed
U

se
rs

to
re

su
b
sc

ri
b
e

-
T

h
e

3
0
0
D

M
a
n
a
g
er

in
2
-p

a
rt

y
su

b
s-

cr
ip

ti
o
n

re
q
u
es

ts
p
u
rg

ed
U

se
rs

to
re

-
su

b
sc

ri
b
e

P
R

5
:

U
se

r
s

p
u
r
g
e
s

a
n
d

r
e
-

d
is

c
o
v
e
r
s

th
e

M
a
n
a
g
e
r

U
se

rs
re

d
is

co
v
er

th
e

M
a
n
a
g
er

th
ro

u
g
h

m
u
lt
ic

a
st

q
u
er

ie
s,

o
r

b
y

li
st

en
in

g
fo

r
m

u
lt
ic

a
st

a
n
-

n
o
u
n
ce

m
en

ts
fr

o
m

th
e

M
a
n
a
-

g
er

-
3
-p

a
rt

y
su

b
sc

ri
p
ti
o
n
:

U
se

rs
p
u
rg

e
th

e
su

b
sc

ri
p
ti
o
n

w
h
en

th
e

R
eg

is
tr

y
p
u
r-

g
es

th
e

M
a
n
a
g
er

.
M

a
n
a
g
er

s
a
re

re
-

d
is

co
v
er

ed
b
y

q
u
er

y
in

g
th

e
R

eg
is

tr
y

o
r

b
y

se
n
d
in

g
m

u
lt

ic
a
st

q
u
er

ie
s

w
h
en

th
e

R
eg

is
tr

y
is

n
o
t

re
sp

o
n
d
in

g



94 EVALUATION 5.3

Step 4: Failure modeling. We use two types of failure models.

� Message loss - There are several reasons for message loss; physical obstacles
causing radio signal loss, packet collisions, packets dropped due to buffer
overflow, etc. We model these failure scenarios as message loss. Messages are
discarded randomly, at a loss rate λ, varying from 0.00 to 0.90, in increments
of 0.05. Message loss is activated after 100s (grace period is 100s, so that
Users can discover the Manager), it remains in effect until the simulation
ends at 5400s (the reason for the simulation duration, D = 5400s is given
in Step 5).

� Interface failure - When a transmitter or receiver on a node fails, a node is
only able to either send or receive messages. Simultaneous receiver and
transmitter failure on a node models temporary radio disconnection, or
power failure (in this case, the cached data is persistent). For each node, the
transmitter and/or receiver are failed randomly, at a failure rate λ, varying
from 0.00 to 0.90, in increments of 0.05. Interface failure occurs at a random
time, from 100s to 5400s. Once the interface failure is activated, it remains
in effect for a portion of the simulation duration (λ x 5400s).

Step 5: Experiment design. We use the application scenarios and parameters used
by the UPnP and Jini models from Dabrowski and Mills for fair comparison. The
simulation run time, D lasts for 5400s. The run time is based on the UPnP re-
commended service advertisement period of 1800s. All three systems use 1800s
for maintaining a lease for registration and subscription. Thus, using three an-
nouncements provides a reasonable opportunity for a system to rediscover the
Manager and regain consistency after a failure occurs. Five Users discover the
Manager and obtain the SD. This process occurs within the first 100s without
interface failure. At a random time between 100s to 2700s, the Manager’s service
changes, causing the Users to become inconsistent with the Manager. Users are
notified of this change through 3-party or 2-party subscription. We repeat the
experiment 30 times to obtain the average and median results.

We benchmark two experiments, which we will refer to as:

(A) Message loss experiment. This experiment uses message loss from Step 4 as
the failure model. Here, we compare the performance of FRODO against
UPnP and a single Registry topology of Jini.

(B) Interface failure experiment. This experiment uses interface failure from
Step 4 as the failure model. Here, we compare the performance of FRODO
against UPnP, and two types of Jini topologies (single and double Registry
topology). This failure model has more severe consequences, because conti-
nuous failure to communicate causes nodes to purge each other faster than
in the message loss experiment. Therefore, we compare the performance of
FRODO against a more robust Jini model consisting of two Registries.



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 95

5.3.5 Results and Discussion

The results we present in this section are based on a detailed analysis of a random
selection of 5 to 10 event logs (out of a total of 30 logs) for each simulation, at
every failure rate.

A. Message Loss Experiment

We find that FRODO is the most responsive and effective protocol up to 75%
loss rate, and has the overall highest efficiency and lowest latency for consistency
maintenance. We also find that reliable unicast transmissions and redundant
multicast transmissions in Jini and UPnP are not advantageous at loss rates
lower than 75%.

To determine whether the performances of the four models have statistical
significance, we perform paired, 2 tails t-test, at 95% confidence level (for all
combinations of models across loss rates 0% to 90%). Our tests suggest that
there are significant differences for (1) Update Effectiveness: between Jini and
FRODO with 3-party subscription, and between both FRODO models, (2) Up-
date Responsiveness: between UPnP and FRODO with 3-party subscription, and
between both FRODO models, and (3) Efficiency Degradation: between each pair
of models, except for UPnP and FRODO with 3-party subscription.

We present our results according to the Update Metrics. For ease of under-
standing, we refer to loss rates lower than 75% as low loss rates, and loss rates
higher than 75% as high loss rates.

Update Effectiveness. Update Effectiveness (Figure 5.5) is the predominant me-
tric that reflects the recovery ability of service discovery protocols to ensure Users
regain consistency. We find that FRODO resolves the lack of aggressive retrans-
mission policy by implementing stronger failure recovery rules. The ability of
FRODO with 2-party subscription to resend the update at a later point of time
(SRN2) proves advantageous when all previous update notifications are lost. This
is shown in Figure 5.5, where FRODO with 2-party subscription maintains the
highest effectiveness at low loss rates. UPnP is the least effective at low loss rates
because message loss during invalidation (to indicate that an update has occur-
red) causes some Users in UPnP never to regain consistency. Unlike FRODO
with 2-party subscription, UPnP does not cache inconsistent Users, nor does it
retry the update. At low loss rates, FRODO with 3-party subscription has higher
effectiveness than Jini because compared to FRODO, the User in Jini has to send
an additional message before it queries; the User has to register for notification
first.

At high loss rates, UPnP emerges as the most effective protocol (Figure 5.5(a))
because UPnP implements PR5, where Users receive the periodic multicast an-
nouncement from the Manager. Users eventually detect a previously purged Ma-
nager, and query its SD. Also, at high loss rates, we find that the aggressive re-



96 EVALUATION 5.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Message loss rate (%)

A
ve

ra
g
e
 E

ff
e
ct

iv
e
n
e
ss

Jini UPnP FRODO with 3-party subscription FRODO with 2-party subscription

b. 2-party subscription vs
    3-party subscription

a. Peer-to-peer vs
    Registry-based

Figure 5.5: FRODO with 2-party subscription has the highest effectiveness at low loss
rates because the Manager retries the update notification at a later point of time. (a)
UPnP’s non-Registry architecture is the most effective at high loss rates. (b) 2-party
subscription is more responsive then 3-party subscription at high loss rates.

transmission policy in Jini yields better performance than FRODO with 3-party
subscription. In general, protocols that implement 2-party subscription give bet-
ter performance at high loss rates, because they are less vulnerable to single point
of failure issues (Figure 5.5(b)).

Update Responsiveness. Update Responsiveness is shown in Figure 5.6. The
results of Update Responsiveness are dependant on the type of subscription and
transport protocol. 2-party subscription generally has faster responsiveness at
high loss rates than 3-party subscription. 3-party subscription is more vulnerable
to a single point of failure issue on the Registry, therefore causing higher delay, and
lower probability of success for Users to regain consistency. Therefore, FRODO
with 2-party subscription combined with faster UDP transmission allows FRODO
to maintain the highest responsiveness at low loss rates. At high loss rates, UPnP
has the best responsiveness, because its inherent non-Registry architecture uses
PR5.

As in Update Effectiveness, UDP-based FRODO with 3-party subscription
has faster responsiveness than Jini at high loss rates. However, the aggressive
retransmission policy in Jini is only beneficial until 80% loss rate. With weaker



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Message loss rate (%)

M
e
d
ia

n
 R

e
sp

o
n
si

ve
n
e
ss

 

Jini UPnP FRODO with 3-party subscription FRODO with 2-party subscription

a. 2-party subscription vs
    3-party subscription

Figure 5.6: The combination of fast UDP transmission, direct User and Manager com-
munication and additional failure recovery in FRODO with 2-party subscription gives
the highest responsive at low loss rates. (a) At high loss rates, architectures with 2-party
subscription are more responsive than architectures with 3-party subscription.

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Message loss rate (%)

C
h

a
n

g
e

-p
ro

p
a

g
a

tio
n

 L
a

te
n

cy

Jini UPnP FRODO with 2-party subscription FRODO with 3-party subscription

TCP vs UDP

Figure 5.7: Unreliable transmission allows fast update propagation at high loss rates
for FRODO with 3-party subscription. Along with fast transmission, the combination of
2-party subscription and better failure recovery in FRODO gives the lowest delay at all
loss rates. TCP in UPnP and Jini causes additional latency.



98 EVALUATION 5.3

failure recovery rules, the performance of Jini deteriorates sharply after 80% loss
rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Message loss rate (%)

E
ff
ic

ie
n
cy

 D
e
g
ra

d
a
tio

n

Jini UPnP FRODO with 3-party subscription FRODO with 2-party subscription

Figure 5.8: FRODO and Jini propagate only 7 messages each, while UPnP propagates
15 messages at 0% loss rate. The efficiency of FRODO degrades the slowest, due to
faster and more efficient failure recovery. The efficiency of Jini degrades the fastest
because of weaker failure recovery. TCP messages are not included in the calculation for
Jini and UPnP.

We further investigate the impact of TCP and UDP by comparing the median
absolute latency for Users in each protocol to regain consistency, for each failure
rate. We remove the denominator from the relative change-propagation, Lλ, so
that the absolute change-propagation latency for a message loss rate is:

Absolute change-propagation latency, L′
λ = tU(ij) − tC(i)

The result of this investigation is shown in Figure 5.7. TCP causes longer
change-propagation latency in UPnP and Jini, compared to FRODO, as shown
in Figure 5.7. TCP uses additional time for setting up the connection before
actually sending the update message. FRODO does not require connection setup.
Furthermore, only a selected few messages are retransmitted in FRODO. FRODO
with 2-party subscription has the shortest delay because it generally does not
depend on the Registry for consistency maintenance (unlike FRODO with 3-party
subscription and Jini).



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 99

Table 5.7: Comparison of consistency maintenance performance for UPnP, Jini and
FRODO at 20% message loss rate. The shaded values show the protocol that has the best
performance. Multiple shades on a single row indicate protocols that are not significantly
different with FRODO at 95% confidence level for this loss rate. FRODO has the best
performance here, while having the best overall performance for loss rates below 75%

.

Update Metrics UPnP Jini FRODO with
3-party subs-
cription

FRODO with
2-party subs-
cription

Update Respon-
siveness

0.999 0.999 1.000 1.000

Absolute change-
propagation la-
tency (s)

3.562 2.075 0.726 0.297

Update Effec-
tiveness

0.992 0.992 1.000 1.000

Efficiency Degra-
dation

0.973 0.948 1.000 1.000

Efficiency Degradation. FRODO has the best overall Efficiency Degradation.
FRODO with 2-party subscription propagates the least number of messages to
ensure Users regain consistency because communication is directly between the
User and the Manager. When there is no message loss, UPnP has the worst effi-
ciency (propagates a total of 15 messages, because of the invalidation step), while
FRODO and Jini have the best efficiency (each propagates 7 messages). However,
as the message loss rate increases, Jini shows the worst degradation in efficiency.
Jini uses more effort to make Users to regain consistency, because compared to
the other systems. Jini has weaker failure recovery ability, as explained in Update
Effectiveness.

The UPnP and Jini models from Dabrowski and Mills do not take into account
the messages used by the TCP layer. Therefore, the true results for Efficiency
Degradation for Jini and UPnP is even lower than shown in Figure 5.8.

Discussion. FRODO has the best consistency maintenance performance until
75% loss rate. In Table 5.7, we highlight the performance of the three proto-
cols at 20% loss rate because of the following: the worst-case scenario for message
loss in IEEE 802.11b, ad-hoc mode wireless links with no error control is around
40% for the office environment, measured by Hoene et al [Hoe03] for 2 nodes at
a critical distance of 18m. In base station mode, with error control, the measu-
rements show that the typical loss rate does not exceed 5%. Since there is no
agreement in the research community on the message loss rates in a typical home
environment, we use 20% (about halfway between 5% to 40% range) as the rea-
sonable loss rate to compare the performance of the three protocols in Table 5.7.



100 EVALUATION 5.3

In a wired network, typical loss rates will be even lower.
The absolute change-propagation latency for FRODO is significantly lower

compared to the other models. As explained earlier in Section 5.3.5, TCP in
Jini and UPnP loses some time setting up the connection, and retransmitting the
connection requests and the update messages. UPnP uses invalidation messages,
while Jini requires more messages before the Registry can notify the Users when
the purged Manager re-registers. Below 75% loss rate, FRODO has an advantage
over TCP-based protocols because FRODO only incurs one-time transmission
delay to send an update, while retransmitting only selected messages.

FRODO implements dynamic Registry election, adds robustness by removing
the dependency on the recovery abilities of underlying protocol stacks, and tailors
service discovery tasks according to device classes. This experiment shows that
our design satisfies the performance required for wired and wireless (including
ad-hoc) home networks, when compared to the less complex designs of Jini (ma-
nually deployed Registry) and UPnP (non-Registry system). The performance of
FRODO starts to deteriorate only after 70% loss rate (well above failure rates for
the home environment), which is expected because of the low number of message
retransmissions. Although the performance can be increased by adding redundant
transmissions for both unicast and multicast messages, we chose not to do so to
satisfy the resource-aware context of FRODO.

B. Interface Failure Experiment

In this experiment, we: (1) compare the consistency maintenance performance of
FRODO, UPnP and Jini, and (2) analyze the effectiveness of the recovery rules,
as presented in Table 5.6. We can analyze the effectiveness of the recovery rules
because interface failure makes a node unable to communicate properly for a con-
tinuous period of time, unlike intermittently at a random instance of time, as done
in the message loss experiment. Therefore, we can decipher which recovery rule is
predominant based on the length of the failure period. In this experiment, we find
that at failure rates below 35% (we call these rates low failure rates), subscription
remains valid because nodes recover from failures before the leases expire. At
failure rates above 35% (we call these rates high failure rates), the nodes purge
information of each other. Therefore, at low failure rates, subscription-recovery
rules are used, and at high failure rates, purge-recovery rules are activated.

FRODO with 2-party subscription has the highest effectiveness at low failure
rates because it implements SRN2 (the Manager retries the update propagation
when the User renews an inactive subscription). UPnP has the highest effectiven-
ess at high failure rates, because of PR5 (multicast service advertisments and
queries). Both FRODO subscription models have the highest responsiveness and
efficiency, across all failure rates.

As done in the message loss experiment, we determine whether the performan-
ces of the five models have statistical significance by performing paired, 2 tails
t-test, at 95% confidence level (for all combinations of models across failure rates



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure rate (%)

A
ve

ra
g

e
 E

ff
e

ct
iv

e
n

e
ss

Jini with a single Registry Jini with 2 Registries UPnP
Frodo with 3-party subscription Frodo with 2-party subscription

(i) SRN2 for FRODO
with 2-party subscription

(ii) PR1, PR3

(iii) PR1, PR4

(iv) PR5

Figure 5.9: (i) SRN2 is most effective because the Manager resends the update noti-
fication when the lease is renewed. (ii) Efficient PR1 in FRODO allows the Registry
to update the Users when the Manager or the Registry recovers from failures. PR3 and
PR4 in (ii) and (iii) allows Users to resubscribe to the Registry and the Manager re-
spectively. (iv) PR5 is most effective at high failure rates where Users rediscover the
Manager through the Manager’s periodic announcements.

0% to 90%). Our tests suggest that there are significant differences for (1) Update
Effectiveness: between all combinations of models, except between both FRODO
models, and between FRODO (both models) and Jini with 2 Registries, and (2)
Update Responsiveness: between all combinations of models, except between both
Jini models, and between FRODO (both models) and UPnP. For Efficiency De-
gradation, we find no significant difference in the performance of all five models.
Therefore, we do not discuss in detail, or show the figure for this metric. Suffice to
say, message retransmission is not an effective recovery method during interface
failure, because the retransmission limit is reached before the failure ends.

Update Effectiveness. Update Effectiveness is the predominant metric that re-
flects the impact of recovery rules. We find that at low failure rates, the pro-
minent recovery rule is SRN2, as implemented in FRODO with 2-party subs-
cription (Figure 5.9(i)). At higher failure rates, PR5, as implemented in UPnP
(Figure 5.9(iv)) is the most effective. In FRODO with 2-party subscription, Users
rediscover the Manager via the Registry, as opposed to direct peer-to-peer commu-



102 EVALUATION 5.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure rate (%)

M
e

d
ia

n
 R

e
s
p

o
n

s
iv

e
n

e
s
s

Jini with a single Registry Jini with 2 Registries UPnP
Frodo with 3-party subscription Frodo with 2-party subscription

(i) PR2 for Jini

(iii) UDP, PR1, and PR4
for FRODO with 3-party 
subscription

(ii) UDP, SRN2, PR1 and PR4 for 
FRODO with 2-party subscription

Figure 5.10: (i) PR2 allows Users in Jini to regain consistency by querying the Registry.
FRODO uses SRN2, which depends on the subscription lease period to regain consistency.
(ii) UDP transmits messages faster than TCP. PR1 enables the Registry to update the
Users when the Registry or the Manager recovers from failures. PR3 enables purged
Users to resubscribe with the Registry. (iii) 2-party subscription, UDP, SRN2, PR1 and
PR4 allow Users in FRODO to be the most responsive.

nication in UPnP, causing the PR5 implementation in UPnP to be more effective
than in FRODO. PR1 (the Registry notifies the User when the Manager registers)
as implemented in FRODO (Figure 5.9(ii)) yields the next highest effectiveness.

Update Responsiveness. The Update Responsiveness metric as shown in Figure
5.10 reveals that FRODO with 2-party subscription incurs the overall shortest
delay for Users to regain consistency, due to a combination of direct, peer-to-peer
communication between the User and the Manager, fast UDP transmission, a low
number of messages during consistency maintenance and the use of SRN2 and
PR1 recovery rules.

Discussion. In this section, we elaborate on the results above by decomposing
our analysis according to the type of recovery rule.



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 103

SRN1: The logs show that SRN1 has no apparent positive impact during inter-
face failure because nodes typically fail longer than the total period for update
retransmissions. SRN1 is more useful during high message loss rates, as shown in
the message loss experiment.

SRN2: The impact of SRN2 is apparent especially at low failure rates because
Users recover from failures quickly, before a subscription is purged. An example
of a scenario without SRN2 is given below. The example shows the simulation
result of UPnP at 15% failure rate. Tx and Rx mean transmitter and receiver,
and the numbers represent time, in seconds. The service changes at t = 2507s,
but the Manager fails to update the User which has both interfaces down from
t = 2023s until t = 2833s. The update notification fails, and the User never
regains consistency! This is shown in the example below, when the User only
“regains consistency” at the end of the simulation run, at t = 5400s. This is a
failure to satisfy the 2-party Consistency Maintenance Principle.

Failure Rate: 15%

Manager Tx down at 381s, up at 1191s
User Tx and Rx down 2023s, up at 2833s

UPnP: User lost consistency at 2507s, regained consistency at 5400s

SRN2 has the highest effectiveness at low failure rates (Figure 5.9(i)), while
PR5 has the highest effectiveness at high failure rates (Figure 5.9(iv)).

PR1: This rule is implemented differently in Jini and FRODO. In Jini, the
Registry notifies interested Users of a new service registration only if the Manager
registers after the User. If the Manager is already registered before the User
discovers the Registry, the Registry does not notify the User. Therefore, service
notification in Jini is only for future registrations. This anomaly is reported
by Dabrowski and Mills [Dab01]. Jini overcomes this problem by forcing Users
to always send queries after the User requests for service notification from the
Registry, so that existing registered services can also be retrieved (PR2). Service
notification in FRODO is more efficient since the Registry notifies interested Users
of existing service registrations. A control experiment with and without PR1,
shown in Figure 5.11 demonstrates the impact of PR1 on the Update Effectiveness
of both FRODO systems.

In addition to a more efficient Registry notification, Users in FRODO disco-
ver the Registry not only by listening for Registry announcements (as used in
Jini), but also by announcing their presence through multicast. This allows faster
discovery of the Registry. This recovery rule helps FRODO to generally have a
higher responsiveness, effectiveness and efficiency than Jini.



104 EVALUATION 5.3

PR1 Impact on FRODO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Interface failure (%)

A
v
e

ra
g

e
 E

ff
e

c
ti
v
e

n
e

s
s

FRODO with 3-party subscription, without PR1 FRODO with 2-party subsciption, without PR1
FRODO with 3-party subscription, with PR1 FRODO with 2-party subscription, with PR1

Figure 5.11: Impact of PR1 recovery rule on the Update Effectiveness of FRODO with
2-party and 3-party subscriptions

PR2: In Jini, PR2 is implemented together with PR1. As mentioned earlier, Jini
requires Users to always query the rediscovered Registry to retrieve the service.
Therefore, PR2 depends on whether the Manager was purged and re-registered
before the User discovers the Registry. We see that such an implementation of
PR2 benefits the responsiveness of Jini at low failure rates where Users regain
consistency faster than FRODO, as shown in Figure 5.6(i).

PR3: This rule benefits the responsiveness and effectiveness of FRODO with
3-party subscription, as shown in Figures 5.9(ii) and 5.10(ii). The Registry in
FRODO explicitly requests purged Users to resubscribe. The response to the
resubscription is the updated SD. PR3 in Jini is implemented such that purged
Users are simply returned with an error message from the Registry. The Users
then redo Registry discovery, service notification request (PR1), and service query
(PR2). Therefore, PR3 in FRODO with 3-party subscription allows faster and
more effective consistency maintenance.

PR4: This rule benefits both 2-party subscriptions in UPnP and FRODO, where
the Manager requests purged Users to resubscribe so that Users can obtain the



5.3 PERFORMANCE BENCHMARK THROUGH SIMULATIONS 105

updated SD. The recovery is beneficial for the responsiveness and effectiveness of
both systems, which remain high above Jini at failure rates above 40%.

PR5: This rule gives the highest effectiveness, as shown in Figure 5.9(iv) and
Table 5.7. Users in UPnP listen to the periodic announcements of the Managers
to rediscover the Manager. The Users have a high probability of regaining con-
sistency because they can get updated when the Manager recovers from failures
and announces its presence. FRODO with 3-party subscription employs a weaker
recovery with PR5, where Users depend on the Registry to purge the Manager,
and only then perform unicast or multicast queries to rediscover the service.

Table 5.8: Average metrics results across interface failure rates from 0% to 90%. The
higher the value for each metric, the better the performance. The shaded protocols offer
the best performance for each metric.

Update Me-
trics

UPnP Jini with
1 Regis-
try

Jini with
2 Regis-
tries

FRODO with
3-party subs-
cription

FRODO with
2-party subs-
cription

Update Re-
sponsiveness

0.553 0.474 0.476 0.580 0.666

Update Ef-
fectiveness

0.922 0.802 0.825 0.878 0.861

Efficiency
Degradation

0.385 0.311 0.361 0.428 0.429

Table 5.8 shows that although FRODO is a single Registry architecture with
unreliable transmissions, FRODO has the highest responsiveness, with the least
degradation in efficiency compared to Jini (even Jini with two Registries) and
UPnP, while maintaining a high degree of effectiveness.

5.3.6 Investigating the Impact of the Backup in FRODO
In FRODO, the Backup replaces the Registry when the Registry fails to respond
to requests (primary-based recovery mechanism). The Backup is updated by
the Registry when there is a change of the configuration information (service
registration, notification request by the User for a particular service, subscription
information, etc.).

In an experiment similar to the interface failure expirement, we change the
SD of the Manager, and fail both the transmitter and the receiver on the Regis-
try, simultaneously (according to increasing failure rate), at t = 100s. The rest
of the parameters remains the same as in the interface failure experiment. We
only focus on Registry failure, to show that the Backup improves the consistency
maintenance performance of FRODO.



106 EVALUATION 5.4

Impact of the Backup on Update Responsiveness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Registry failure rate (%)

U
p

d
a

te
 R

e
sp

o
n

si
ve

n
e

ss

FRODO without a Backup FRODO with a Backup

(a) Registry recovers before 
Backup can take over

(b) Backup replaces the Registry

Figure 5.12: Impact of Backup on Update Responsiveness

Our results show that when the Manager fails to update the Registry, it purges
the Registry information. When the Backup replaces the Registry, the Backup
announces its presence, and the Manager re-registers its updated SD with the
Backup. The Backup continues the 3-party subscription without requiring addi-
tional steps by the Manager and the User. In this experiment, the polling period
between the Backup and the Registry is set to 120s.

Figures 5.12 and 5.13 show the Update Responsiveness and Update Efficiency
of system with a Backup. The impact of the Backup on Update Responsiveness
is only apparent after 15% failure rate, as shown in Figure 5.12(a) because the
Registry recovers before the Backup detects Registry failure, and before the sub-
scription expire. After 15%, we find that the Backup successfully replaces the
Registry and continues the update notification seamlessly. The Update Respon-
siveness remains high at 0.8. The cost of Backup is lower Update Efficiency, which
drops from 1.0 to 0.75 when there is no failure. However, when there is Registry
failure, the cost of Backup on Update Efficiency is not significant, as shown in
Figure 5.13. Since we allow the Registry to recover before the simulation ends,
the Update Effectiveness, with and without the Backup is always 1.0, across all
failure rates.



5.4 IMPLEMENTATION OF FRODO 107

Impact of the Backup on Update Efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Registry failure rate (%)

U
p

d
a

te
 E

ff
ic

ie
n

cy

FRODO without a Backup FRODO with a Backup

M=3 with 1 Registry

Figure 5.13: Impact of Backup on Update Efficiency

5.4 Implementation of FRODO

In this section, we describe our prototype of the FRODO system. We vali-
date the results of the 300D simulation (without the Backup), described in Sec-
tion 5.3.6, with the performance of the FRODO prototype. We also compare
both results of FRODO with the performance of the simulated Jini model, and
its Java implementation. The validation increases confidence in our simulation
results presented in the previous sections.

The FRODO prototype is implemented in C (the compiler version is gcc 4.0.3).
Our development platform is Linux (any Linux distribution that has Posix APIs).
FRODO is also available for the Windows platform, and offers Java wrappers that
act as interfaces to the FRODO executables to support Java-based applications.
The current implementation of FRODO works for both Ethernet and WLAN, for
a PC-based environment.

Table 5.9 summarizes the memory usage of the entities in our FRODO proto-
type. We implemented 300D and 3D device classes. The work on the 3C device
class is still ongoing, but we can estimate the minimum memory size consumed
by the 3C device class by deducting the irrelevant functions (e.g. periodic active
discovery) from the 3D Manager. The memory requirement for FRODO entities
are substantially smaller than for Jini entities. A Jini device based on Java 2



108 EVALUATION 5.5

Micro Edition Connected Device Configuration (CDC) [Mic05], with RMI requi-
res a minimum of 2.5 MB of ROM and 1 MB of RAM, plus TCP/IP network
connectivity [Kam00]. These are resources only found in set-top boxes, network
printers, network storage servers, etc.

Table 5.9: Memory measurement for the prototype entities. We estimate the code size
for the 3C Manager by removing irrelevant functions from the 3D Manager. The stack
size for a 300D entity is ±3kb, while a 3D entity uses ±2.5kb

Device class Static
program
size

Runtime
memory

300D 37.3kB 5kb
3D 25kb 3kb
3C 10kB (esti-

mate)
-

Our validation experiment uses the same scenario presented in Section 5.3.6,
for the single Registry topology of FRODO. The Registry is failed at the time
when the Manager has changes to its SD (100s after the Manager initializes),
and has to notify the Registry. The purpose of this scenario is to compare the
Update Responsiveness of FRODO and Jini when the Registry recovers in both
systems, and eventually updates the User. We compare the results of our Jini
and FRODO implementations against the results of the respective simulations,
to increase confidence in the results we present in the message loss and interface
failure experiments. We fail the transmitter and the receiver on the Registry
simultaneously, and allow the recovery to take place based on increasing failure
rates (0% to 80%, with 20% increment). The topology for both systems contain
one Registry, a Manager and a User. For each entity, we use Pentium II, 350MHz,
Pentium II 400MHz and Pentium Pro 180MHz machines respectively, connected
via a 100Mbps switch, so that the network is isolated from unwanted traffic.

Figure 5.14 shows the Update Responsiveness of the simulated FRODO and
Jini models, and of the respective implementations. The results from the imple-
mentation corroborate the results from the simulations. We configure the proces-
sing speed and network latency in the simulations based on the implementation
parameters. If these parameters are not accurate, the results from the simulations
differ from the experimental results.

We also measure the average number of messages (taken over 30 runs) received
and transmitted by each type of entity in Jini and FRODO. The results show that
on average, Jini propagates more than twice the number of messages propagated
in FRODO, mainly due to TCP retransmissions and acknowledgements.

The Update Effectiveness for all models and implementation is 1.0 because
the Registry recovers eventually.



5.5 DISCUSSION AND CONCLUSION 109

Implementation versus Rapide simulation 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80
Registry failure rate (%)

U
p

d
a

te
 R

e
s
p

o
n

s
iv

e
n

e
s
s

Jini with Rapide simulation Jini with Java implementation
FRODO with Rapide simulation FRODO with C implementation

\

Figure 5.14: Validation of simulation against real life implementation for a single
Registry topology of FRODO and Jini.

5.5 Discussion and Conclusion

In this chapter, we have shown how we satisfy the Research Question from
Chapter 1, which requires an effective and efficient solution to service discovery
at home. FRODO is effective because it is reliable against communication and
node failures, while providing guarantees on functional correctness. FRODO is
also efficient because it is lightweight, and consumes less bandwidth than its
competitors.

Our approach of looking at the artifacts of our design in different ways impro-
ves our understanding of service discovery. We analyze and evaluate the FRODO
system using different techniques; model-checking using DT-Spin, Rapide-based
simulations and benchmarks (against models of Jini and UPnP), and testing and
measuring the C-based prototype. We now discuss the advantages and the disad-
vantages of the approach.

During the modeling and analysis of FRODO, we obtain an in-depth un-
derstanding to the complexity and the behavioral properties of a robust service
discovery system. This understanding inspired the formulation of the Service
Discovery Principles and recovery rules in Chapter 3.

Most of the design errors are captured in the design phase, during simulation
and model-checking. As shown in Table 5.2, we discovered loopholes in the pro-
tocol that would have been time-consuming and more difficult to rectify if the
system had been deployed as a full-fledged implementation.



110 EVALUATION 5.5

By comparing the performance of our Rapide-based model of FRODO, against
the models of Jini and UPnP early in the design phase, we identify and incorpo-
rate best practices of the competitor systems (2-party subscription and multicast
querying in FRODO are similar to UPnP, while 3-party subscription, leasing and
service notification are similar to Jini). As a result, when the best practices of Jini
and UPnP are combined with our own innovations (Registry election, primary-
based recovery protocols, and device classification), FRODO gives overall better
performance, especially at failure rates expected in the home environment.

By validating the results of our prototype performance against the results of
the Rapide-based simulation, we gain the following benefits: (1) we check the
integrity of our simulation results, and (2) we capture sequences of events in the
implementation that deviate from the design specification (detected when the
prototype performance does not corroborate the simulation results). Therefore,
validation increases confidence on the presented results and the prototype itself.
The prototype is a resource-lean realization of the FRODO protocol which allows
us to estimate how much memory is needed in a full implementation.

The main challenge to analyzing FRODO using different approaches is to
maintain the consistency of the design across different models (from different
tools). We have made every effort to maintain the consistency but we have no
way of formally establishing this. To achieve this, a common base specification
would be needed for which specialized specifications could be generated. This is
beyond the scope of the thesis.



Chapter 6
Conclusion

The important thing in science is not so much to obtain new facts,
as to discover new ways of thinking about them.

Sir William Bragg

We now summarize the contributions in this thesis, in relation to the Research
Question described in Section 1.2. We also highlight areas for improvement in
FRODO and future research directions in service discovery.

6.1 Contributions
In Chapter 1, we identify the following Research Question:

Research Question: How to enable a variety of home appliances to discover
each other’s services effectively and efficiently?

To address the Research Question, we built a small-scale, unattended service
discovery system that enables devices to self-configure by discovering each other’s
services. Service discovery is necessary because there is no system administration
in the home.

We focus on the 3Rs from Section 1.2 for building a service discovery system
for the home; Reliability, Resource-constraints and heteRogeneity. By addressing
these challenges, our system satisfies the Research Question in the sense that we
show how a system can be built. This is thus a kind of proof by existence. We do
not imply that FRODO is the only system possible, or even that FRODO is the
best system possible, However, we have been able to demonstrate qualitatively
and quantitatively that our system is better than the state of the art. We in-
corporate reliability (and self-healing) so that our system is effective in the face
of communication and node failures. We achieve this by implementing various

111



112 CONCLUSION 6.1

fault-tolerant measures. We also make the system efficient in terms of resource-
consumption. The system is resource-aware, allowing resource-lean nodes to offer
their services. A lightweight service discovery system also should not substanti-
ally increase cost of devices (so that the price of home appliances do not prevent
home owners to adopt new technologies). Furthermore, we ensure that the sys-
tem supports heterogeneous home appliances by abstracting away the underlying
protocol stacks. Therefore, our protocol is portable over heterogeneous devices
and networks, and it will work on a variety of appliances.

Before we design our service discovery system, we systematically analyze the
fundamentals of service discovery in Chapter 2; the different architectures, the
functionalities of service discovery, the underlying distributed system models for
these functionalities, and the operational aspects of designing a service discovery
system (system size, lossy environment, resource-constraints, system heteroge-
neity and security). We analyze the general design space, which leads to identify-
ing appropriate design decisions on the type of architecture and service discovery
functions that our system should incorporate.

We then define the requirements for service discovery in the home environ-
ment in Chapter 4; low cost of devices, robustness, portable design and security
(we do not include security measures in our design, but delegate it to the applica-
tion layer). We summarize in Table 6.1, the innovations in our service discovery
system, FRODO from Chapter 4.

Table 6.1: Summary of design solutions and system properties of FRODO (Chapter 4).

3Rs for a Pervasive
Home System

System Proper-
ties

Design Solutions

Reliability Self-
configuration

Registry election, so that a single Registry is
elected and maintained.

Self-healing Primary-based recovery protocols such as a
Backup for the Registry, and Registry moni-
toring. Robustness against various communi-
cation and node failures.

Resource-
constraints

Resource-aware Classification of devices based on resource-
constraints. Service discovery tasks are parti-
tioned across device classes. The roles of Re-
gistry and Backup are transferred to more po-
werful devices.

Heterogeneous de-
vices and networks

Portable design The design abstracts away the underlying pro-
tocol stacks.

We adopt the “designing for reliability” culture, as proposed by Edwards and
Grinters in their Seven Challenges for the ubiquitous home [Edw01]. We do this
by implementing recovery behaviors for various failure scenarios, as shown in
Chapter 4. We also subject the design to model-checking and simulations early
in the design phase, as described in Chapter 5. We evaluate and strengthen our



6.2 FUTURE WORK AND REFLECTIONS 113

system against communication and node failures .
To our knowledge, no other service discovery design has been analyzed in

such detail; high level design with diagrammatic notations, model-checking, si-
mulations, and prototyping. As a result of our in-depth analysis, we produce the
following results:

� Formulation of the Service Discovery Principles and the necessary recovery
rules (Chapter 3). The principles and the recovery rules result from our in-
depth understanding on the complex behavior of a robust service discovery
system, in the face of node, and interface failures.

� FRODO is the first service discovery system that provides guarantees on
its behavior (Chapter 5). FRODO has a stronger claim on functional cor-
rectness compared to other service discovery systems because we formally
verify models of various parts of FRODO against the Service Discovery Prin-
ciples. Our verifications represent a significant effort of approximately one
year, thus providing confidence in the correctness of the design. However,
more extensive verification would increase the confidence further.

� FRODO has good performance, and in circumstances appropriate to the
home environment FRODO outperforms competitor systems like Jini and
UPnP (Chapter 5). We obtain this performance because we combine best
practices from Jini and UPnP with our own innovations.

� Our prototype in C is a resource-lean realization of the FRODO system.
We show that even though FRODO implements various recovery measures,
it has low resource consumption. We also successfully validate a selected
set of Rapide-based simulation results with our prototype, which further
increases confidence in our design.

The major contributions in this thesis; the FRODO service discovery system,
the seven Service Discovery Principles and the failure recovery rules are significant
towards building a small-scale, autonomous service discovery system.

6.2 Future Work and Reflections
FRODO does not require attendance of a system administrator. It is also resource-
aware and lightweight, allowing resource-lean nodes to take part in service disco-
very. Furthermore, FRODO gives performance equal to or better than Jini and
UPnP (at failure rates appropriate for the home environment), while giving gua-
rantees on functional correctness. However, there are still areas for improvement,
some of which are listed below.

� Security features need to be integrated into FRODO before it can be de-
ployed successfully. Further investigation on the impact of malicious beha-
vior, especially during Registry election needs to be undertaken.



114 CONCLUSION 6.2

� It is difficult to estimate the number of services that FRODO can support
because we do not have data on the limitations and capabilities of 300D
nodes that are available in an average home environment. Therefore, further
analysis needs to be done to understand the limitations of FRODO in a
typical, real-life home environment.

� As time progresses in the system, the available resources of 300D nodes
may change (due to lack of memory, depletion or recharging energy, etc).
Therefore, it should be possible to upgrade or downgrade the device class
automatically, based on available resources.

� The impact of mobility on FRODO needs to be investigated. People do
not walk around with TV sets and fridges, but smaller devices are moved
around the home, such as the remote control. Therefore mobility may effect
the available period of a service. One way to improve service discovery in a
mobile system is to automatically adjust the lease, poll and announcement
periods of the mobile service. Users can also adjust to a constantly mobile
service, by polling the Manager directly, upon discovering the service. The
User can then disregard the service and rediscover another when the service
becomes unavailable too often.

Beyond the home context, there are still several interesting directions in which
future research on service discovery can be taken.

� The semantics of device, service and attribute names still require much at-
tention, to improve the context of a discovered service. For a truly unatten-
ded system deployment, different service discovery systems should adhere
to a single, standardized method for describing services. This is important
to ensure that applications that rely on discovered services can make the
correct inference on the usage of the service.

� Service discovery systems should ensure that a service is discovered and
accessed by authorized entities only. However, authorization should be dy-
namically allocated and revoked, as time progresses, and the requirement
or capability of the entity changes.

� For a service discovery system in the pervasive environment to mature (as
DNS has done in the Internet), applications that use service discovery need
to be actively developed and promoted. One major hindrance to achieving
this objective is the lack of agreement by manufacturers of devices and
applications on a standard service discovery platform. A service discovery
system that unifies well-known service discovery protocols is a step towards
this objective.

� Existing service discovery architectures for wide-area networks focus more
on scalability issues (such as bandwidth efficiency, and supporting a large



6.2 FUTURE WORK AND REFLECTIONS 115

number of nodes). More work has to be done to produce a large-scale service
discovery architecture, which is also robust against failures. A scalable and
robust architecture is especially important in mobile ad-hoc networks, be-
cause nodes are easily moved, wireless connectivity is uncertain, bandwidth
availability is limited, and energy is constrained. Scalable service discovery
designs must be evaluated against various failure scenarios.

We conclude by stressing that a fast, reliable and yet lightweight service dis-
covery system is the medium for propelling the power of computing beyond the
realm of personal computers, such that information and services are accessible
anywhere, and anytime.





List of Figures

1.1 Relating the research challenges in autonomous, pervasive and
home computing. Arrows are used for challenges that are in-
terrelated in the three paradigms. Self-configuration (A1) is an
inherent property of service discovery, which removes (or requi-
res only minimal) system administration (C1). We show that by
implementing the properties of autonomous computing, invisibi-
lity (B2) is achieved. We specifically focus on the 3Rs; Reliability
(C2), Resource-constraints (B3) and heteRogeneous devices and
network (B4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 (a) The non-Registry architecture consists of Users and Managers
that multicast queries and service advertisements. (b) The Regis-
try architecture uses unicast for registering services and sending
queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Logical non-Registry topologies. (a) In the meshed topology, Users,
U and Managers, M can listen to each other’s queries and service
advertisements. (b) In the cluster-based topology, Users, U and
Managers, M may form a logical cluster according to some crite-
ria. A and B denotes two types of clusters, where UA,B belongs to
both clusters, and is able to discover services of both clusters. . . 15

117



118 LIST OF FIGURES

2.3 Logical Registry topologies. (a) In the unconnected Registry topo-
logy, Registries, R1 and R2 do not communicate with each other,
but User, U1 and Manager, M2 may register and discover ser-
vices from both R1 and R2. (b) In the meshed Registry topology,
Registries are peers to each other, and forward messages to all
their peers. (c) In the tree-based Registry topology, Registries R1
and R2 are child Registries of R3. Child Registries may forward
messages to parent Registries. (d) In the clustered Registry to-
pology, Registries optimize the tree or mesh topology by limiting
query processing to a select few Registries. A and B are two clus-
ters, where Registries, RA and RB can only communicate with the
members of their own cluster. RA,B is able to communicate within
both clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Summary of operational design aspects and solutions, tailored for
service discovery. The design rationale for a service discovery sys-
tem depends on its own relevant set of operational aspects. . . . . 23

2.5 Taxonomy of state of the art solutions to operational aspects. Sha-
ded service discovery systems support the proposed solutions. Appl
means the solution to the operational issue is supported by the ap-
plication layer. Some systems depend on solutions provided by the
underlying protocol stacks, such as TCP, IP, Bluetooth and ad-hoc
routing protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Taxonomy of state of the art functional implementation. The more
shades a function has, the higher the effectiveness of the function.
However, the choice of method impacts the efficiency, responsiven-
ess and resource consumption. . . . . . . . . . . . . . . . . . . . . . 32

3.1 Service discovery system states. (a) p′ is the state of Connectivity,
Global Connectivity or Disconnect, and p is the response of the
service discovery system to satisfy a Service Discovery Principle.
(b) The ideal state for a function has no failure, and the function
performs correctly. In the non-ideal state, the function may per-
form incorrectly. But when the failure ends, the service discovery
function should eventually recover from failures and return to the
ideal state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 System flow and relations between sets during Registration and
Service Discovery. Registration, ServiceSearch and ServiceFound are
shown as messages sent between entities. A service is registered
by the Manager at time t1, then discovered by the Registry at t2,
and User searches for the service at or before t2. The Registry
processes the request at t3, where it finds matching services for
the User. The User discovers the service at t4. . . . . . . . . . . . 42



LIST OF FIGURES 119

3.3 System flow and relations between sets during Configuration Purge.
A service is purged by the Manager at t5, then the Registry is
notified at t6, which then purges the registration. The Registry
notifies the User at t7, and the User purges the service from its
DiscoveredSD cache. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Service discovery system life cycle. When a system consists of
more than one entity, Configuration Discovery is performed, fol-
lowed by Registration or SD Discovery. Registration is triggered
when there exists a Manager with OfferedSD(m). SD Discovery is
triggered when there exits a User with Requirement(u), or if the
Registry has MatchingSD(c, u). SD Discovery is done every time
there is a new requirement or as long as the User has not disco-
vered the required service, where |DiscoveredSD(u,m)| = 0. When
UpdateSD(m) occurs in the Manager (SD changes), Consistency
Maintenance is performed. Configuration Purge occurs every time
entities face DisConn(e, e′) due to failures. When failures end, and
Conn(e, e′) is restored, the cycle is restarted. . . . . . . . . . . . . . 43

3.5 Consistency maintenance through notification with 3-party subs-
cription. The User discovers the Manager and subscribes to re-
ceive updates via the Registry. The User periodically renews the
subscription lease by sending SubscriptionRenew messages. The
Manager sends a ServiceUpdate message when the service changes. 49

4.1 The FRODO design approach. In Phase 1, we analyze state of
the art designs and identify areas for improvement. We also iden-
tify requirements for service discovery for the home. In Phase 2,
we specify the high-level design of the protocol in flowcharts and
Rapide. We then improve and evaluate the design through model-
checking and simulation. In Phase 3, we implement our prototype,
which we use to compare the implementation performance against
the simulated model . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 FRODO device classes. 300D devices are the most powerful, thus
the Registry is elected among these devices. The bigger the box
that depicts the Manager or the User, the heavier the tasks for that
device class. The application triggers the Manager and the User
entities by providing the values for the attributes, and prompting
when the User should discover the service . . . . . . . . . . . . . . 60



120 LIST OF FIGURES

3.4 Service discovery system life cycle. When a system consists of
more than one entity, Configuration Discovery is performed, fol-
lowed by Registration or SD Discovery. Registration is triggered
when there exists a Manager with OfferedSD(m). SD Discovery is
triggered when there exits a User with Requirement(u), or if the
Registry has MatchingSD(c, u). SD Discovery is done every time
there is a new requirement or as long as the User has not disco-
vered the required service, where |DiscoveredSD(u,m)| = 0. When
UpdateSD(m) occurs in the Manager (SD changes), Consistency
Maintenance is performed. Configuration Purge occurs every time
entities face DisConn(e, e′) due to failures. When failures end, and
Conn(e, e′) is restored, the cycle is restarted. . . . . . . . . . . . . . 62

4.3 Unicast query, with notification for unavailable services. The Re-
gistry notifies the User with a SrvFound message when a matching
service becomes available . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Modeling FRODO. The FRODO Modeling box shows the abstrac-
tion link between the 3 modules, where the outer boxes abstract
some functions from the inner boxes. Connectivity and Global
Connectivity are modeled with/without message loss respectively,
and Disconnect is modeled as node failure. . . . . . . . . . . . . . . 77

5.2 States of a service discovery function. The ideal state for a function
has no failure, and the function performs correctly. In the non-ideal
state, the function may perform incorrectly. But when the failure
ends, the service discovery function should eventually recover from
failures and return to the ideal state. . . . . . . . . . . . . . . . . . 82

5.3 In the Jini model from NIST, a device can instantiate as a User, a
Manager, or a Registry. The Registry component is only relevant
for Jini). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 In the FRODO model, a device can instantiate as a 3C, 3D or 300D
class. A 300D node has a Registry component which performs Re-
gistry election, and which is triggered when it is elected as the
Registry. 300D and 3D nodes can instantiate as a User and a Ma-
nager, while 3C nodes are only Managers. The User and Manager
behaviors are tailored according to the device class limitations. . . 90

5.5 FRODO with 2-party subscription has the highest effectiveness at
low loss rates because the Manager retries the update notification
at a later point of time. (a) UPnP’s non-Registry architecture is
the most effective at high loss rates. (b) 2-party subscription is
more responsive then 3-party subscription at high loss rates. . . . . 96



LIST OF FIGURES 121

5.6 The combination of fast UDP transmission, direct User and Mana-
ger communication and additional failure recovery in FRODO with
2-party subscription gives the highest responsive at low loss rates.
(a) At high loss rates, architectures with 2-party subscription are
more responsive than architectures with 3-party subscription. . . . 97

5.7 Unreliable transmission allows fast update propagation at high loss
rates for FRODO with 3-party subscription. Along with fast trans-
mission, the combination of 2-party subscription and better failure
recovery in FRODO gives the lowest delay at all loss rates. TCP
in UPnP and Jini causes additional latency. . . . . . . . . . . . . . 97

5.8 FRODO and Jini propagate only 7 messages each, while UPnP
propagates 15 messages at 0% loss rate. The efficiency of FRODO
degrades the slowest, due to faster and more efficient failure reco-
very. The efficiency of Jini degrades the fastest because of weaker
failure recovery. TCP messages are not included in the calculation
for Jini and UPnP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 (i) SRN2 is most effective because the Manager resends the up-
date notification when the lease is renewed. (ii) Efficient PR1 in
FRODO allows the Registry to update the Users when the Ma-
nager or the Registry recovers from failures. PR3 and PR4 in
(ii) and (iii) allows Users to resubscribe to the Registry and the
Manager respectively. (iv) PR5 is most effective at high failure
rates where Users rediscover the Manager through the Manager’s
periodic announcements. . . . . . . . . . . . . . . . . . . . . . . . . 101

5.10 (i) PR2 allows Users in Jini to regain consistency by querying the
Registry. FRODO uses SRN2, which depends on the subscription
lease period to regain consistency. (ii) UDP transmits messages
faster than TCP. PR1 enables the Registry to update the Users
when the Registry or the Manager recovers from failures. PR3
enables purged Users to resubscribe with the Registry. (iii) 2-party
subscription, UDP, SRN2, PR1 and PR4 allow Users in FRODO
to be the most responsive. . . . . . . . . . . . . . . . . . . . . . . 102

5.11 Impact of PR1 recovery rule on the Update Effectiveness of FRODO
with 2-party and 3-party subscriptions . . . . . . . . . . . . . . . . 104

5.12 Impact of Backup on Update Responsiveness . . . . . . . . . . . . 106
5.13 Impact of Backup on Update Efficiency . . . . . . . . . . . . . . . 107
5.14 Validation of simulation against real life implementation for a sin-

gle Registry topology of FRODO and Jini. . . . . . . . . . . . . . . 109





List of Tables

2.1 Service discovery functions, methods and related distributed sys-
tem models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Classification of recovery rules for consistency maintenance. Subscription-
recovery rules for each type of update take effect when subscription
still remains valid. Purge-rediscovery rules occur when subscrip-
tion expires, and may coincide based on the failure scenario. . . . 50

4.1 Requirements, design solutions and assumptions in FRODO . . . . 58
4.2 Summary of the functions in FRODO, and the methods to achieve

the functional objectives . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 An example of the impact of message loss on state space. In this
example, when MAX LOSS > 1, the verification halts because of
machine memory limitation. . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Summary of failure scenarios that violate the Service Discovery
Principles, and the resulting design solutions. The “Ref” column
is used in Table 5.3 to refer to the design solutions incoporated in
the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Verification results. The “success” results are obtained after cor-
recting the failures using the design solutions from Table 5.2. . . . 84

5.4 Comparison of state of the art consistency maintenance mecha-
nisms and recovery rules. The description of the recovery rules is
presented in Chapter 3, Section 3.3 . . . . . . . . . . . . . . . . . . 86

5.5 Network characteristics. UPnP and Jini rely on notifications from
the transport layer to detect transmission failures. FRODO does
not rely on lower layers to detect failures. Redundant multicast
transmissions also do not occur in FRODO because it does not fit
the resource-aware context. . . . . . . . . . . . . . . . . . . . . . . 91

123



124 LIST OF TABLES

5.6 Recovery rules, as implemented in the UPnP, Jini and FRODO
models. For the message loss experiment, we only use the single
Registry topology of Jini. The gray areas indicate stronger imple-
mentation of the recovery rule. . . . . . . . . . . . . . . . . . . . . 93

5.7 Comparison of consistency maintenance performance for UPnP,
Jini and FRODO at 20% message loss rate. The shaded values
show the protocol that has the best performance. Multiple sha-
des on a single row indicate protocols that are not significantly
different with FRODO at 95% confidence level for this loss rate.
FRODO has the best performance here, while having the best
overall performance for loss rates below 75% . . . . . . . . . . . . . 99

5.8 Average metrics results across interface failure rates from 0% to
90%. The higher the value for each metric, the better the perfor-
mance. The shaded protocols offer the best performance for each
metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.9 Memory measurement for the prototype entities. We estimate the
code size for the 3C Manager by removing irrelevant functions from
the 3D Manager. The stack size for a 300D entity is ±3kb, while
a 3D entity uses ±2.5kb . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Summary of design solutions and system properties of FRODO
(Chapter 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Bibliography

[Avi04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. In IEEE Transac-
tions on Dependable and Secure Computing, vol. 1, pp. 11–33. IEEE
Computer Society Press, Los Alamitos, California, Jan-Mar 2004.

[AW99] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In Pro-
ceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP), pp. 186–201. ACM Press, December 1999.

[Bet00] C. Bettstetter and C. Renner. A comparison of service discovery proto-
cols and implementation of the service location protocol. In Proceedings
of 6th EUNICE Open European Summer School: Innovative Internet
Applications, pp. 101–108. University of Twente, September 2000.

[Bir82] A. D. Birrell, R. Levin, M. D. Schroeder, and R. M. Needham. Gra-
pevine: an exercise in distributed computing. Communications of the
ACM, vol. 25(4):pp. 260–274, 1982.

[Blu01] Specification of the Bluetooth System, Core, Vol. 1, Feb 2001.

[Bos97] D. Bosnacki. Implementing discrete time in promela and spin. In Pro-
ceedings of the VIII Conference on Logic and Computer Science, LIRA
’97,, pp. 25–32. 1997.

[Bow90] M. Bowman, L. L. Peterson, and A. Yeatts. Univers: an attribute-
based name server. Software-Practices and Experiences, vol. 20(4):pp.
403–424, 1990.

[Bra01] J. Bray, C. F. Sturman, and J. Mandolia. Bluetooth 1.1 Connect Wi-
thout Cables, 2nd Edition. Prentice Hall, December 2001.

[Bri02] E. Brinksma and A. Mader. Model checking embedded system designs
(invited). In 6th Int. Workshop on Discrete Event Systems (WODES),

125



126 BIBLIOGRAPHY

pp. 151–158. IEEE Computer Society Press, Los Alamitos, California,
Oct 2002.

[Cat92] V. Cate. Alex - a global file system. In Proceedings of the USENIX File
System Workshop, pp. 1–11. USENIX, Ann Arbor, Michigan, 1992.

[Cha94] D. Chadwick. Understanding X.500 The Directory. Chapman & Hall,
London, 1994.

[Cha02] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Gsd: a novel group-
based service discovery protocol for manets. In 4th International Work-
shop on Mobile and Wireless Communications Network, pp. 140–144.
IEEE Computer Society, Stockholm, Sweden, 2002.

[Coh94] J. Cohen, S. Aggarwal, and Y. Goland. General Event Notification
Architecture Base: Client to Arbiter, June 1994.

[Cou05] G. F. Coulouris and J. Dollimore. Distributed systems: concepts and
design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, fourth edn., 2005.

[Cze99] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architec-
ture for a secure service discovery service. In Proceedings of ACM/IEEE
International Conference on Mobile Computing and Networking (Mo-
biCom’99), pp. 24–35. Kluwer Academic Publishers, 1999.

[Dab01] C. Dabrowski and K. Mills. Analyzing properties and behavior of ser-
vice discovery protocols using an architecture-based approach. In Pro-
ceedings of Working Conference on Complex and Dynamic Systems Ar-
chitecture (CDSA). Distributed Systems Technology Centre, December
2001.

[Dab02a] C. Dabrowski, K. Mills, and J. Elder. Understanding consistency main-
tenance in service discovery architectures during communication fai-
lure. In Proceedings of the Third International Workshop on Software
and Performance, pp. 168–178. ACM Press, July 2002.

[Dab02b] C. Dabrowski, K. Mills, and J. Elder. Understanding consistency main-
tenance in service discovery architectures in response to message loss.
In Proceedings of the 4th International Workshop on Active Middleware
Services, pp. 51–60. IEEE Computer Society, July 2002.

[Dab05] C. Dabrowski, K. Mills, and S. Quirolgico. A Model-based Analysis of
First-Generation Service Discovery Systems. Special Publication 500-
260, National Institute of Standards and Technology, 2005.

[Duv03] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A strong
consistency mechanism for the world wide web. IEEE Transactions on
Knowledge and Data Engineering, vol. 15(5):pp. 1266–1276, 2003.



BIBLIOGRAPHY 127

[Edw01] W. K. Edwards and R. E. Grinter. At home with ubiquitous computing:
Seven challenges. In UbiComp ’01: Proceedings of the 3rd internatio-
nal conference on Ubiquitous Computing, pp. 256–272. Springer-Verlag,
London, UK, 2001.

[Fen97] W. Fenner. Internet group management protocol, version 2, rfc-2236,
1997.

[Fra97] M. J. Franklin, M. J. Carey, and M. Livny. Transactional client-server
cache consistency: alternatives and performance. ACM Transactions
on Database Systems, vol. 22(3):pp. 315–363, 1997.

[Fra04] C. Frank and H. Karl. Consistency challenges of service discovery in
mobile ad hoc networks. In Proceedings of the 7th ACM Internatio-
nal Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), pp. 105–114. 2004.

[Gad85] S. K. Gadia and J. H. Vaishnav. A query language for a homoge-
neous temporal database. In PODS ’85: Proceedings of the fourth ACM
SIGACT-SIGMOD symposium on Principles of database systems, pp.
51–56. ACM Press, New York, NY, USA, 1985.

[Gan03] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing
era. IBM Systems Journal, vol. 42(1):pp. 5–18, 2003.

[Gel99] H.-W. Gellersen, M. Beigl, and H. Krull. The mediacup: Awareness
technology embedded in a everyday object. In HUC ’99: Proceedings
of the 1st international symposium on Handheld and Ubiquitous Com-
puting, pp. 308–310. Springer-Verlag, London, UK, 1999.

[G.J98] G.J.Holzmann. An analysis of bitstate hashing. In Formal Methods In
System Design, vol. 13, pp. 287–305. Springer-Verlag, November 1998.

[G.J03] G.J.Holzmann. The model checker spin, primer and reference manual.
Addison-Wesley, September 2003.

[Gol00] Y. Goland, T. Cai, P. Leach, and Y.Gu. Simple service discovery pro-
tocol, version 1.0, 2000.

[Gon01] L. Gong. Jxta: A network programming environment. IEEE Internet
Computing, vol. 5(3):pp. 88–95, May-June 2001.

[Gra89] C. Gray and D. Cheriton. Leases: An efficient fault tolerant mecha-
nism for distributed file cache consistency. In Proceedings of the 12th
ACM Symposium on Operating Systems Principles (SOSP), pp. 202–
210. ACM Press, Austin, Texas, December 1989.



128 BIBLIOGRAPHY

[Gud03] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and H. Nielsen.
Simple Object Access Protocol (SOAP) V.1.2, Part 1: Messaging Fra-
mework, June 2003.

[Gut03] E. Guttman, C. Perkins, J. C. Veizades, and M. Day. Service Location
Protocol, V.2, RFC-2608. Internet Engineering Task Force (IETF),
December 2003.

[Han98] M. Handley and V. Jacobson. Sdp: Session description protocol, rfc-
2327, 1998.

[Hoe03] C. Hoene, A. Gunther, and A. Wolisz. Measuring the impact of slow user
motion on packet loss and delay over ieee 802.11b wireless links. In 28th
Annual IEEE Conference on Local Computer Networks (LCN 2003),
The Conference on Leading Edge and Practical Computer Networking,
pp. 652–662. IEEE Computer Society, 2003.

[How99] T. Howes, M. Smith, and G. S. Good. Understanding and Deploying
LDAP Directory Services. Macmillan Technical Publishing, Indianapo-
lis, Indiana, 1999.

[Hua01] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile en-
viroment. In MobiDe ’01: Proceedings of the 2nd ACM international
workshop on Data engineering for wireless and mobile access, pp. 27–34.
ACM Press, New York, NY, USA, 2001.

[Hut00] M. Huth and M. Ryan. Logic in computer science: Modelling and
reasoning about systems. Cambridge University Press, First Edition,
January 2000.

[I.S01] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan. A
scalable peer-to-peer lookup service for internet applications. In Pro-
ceedings of the 2001 ACM SIGCOMM Conference. 2001.

[Jar84] M. Jarke and J. Koch. Query optimization in database systems. ACM
Computing Surveys (CSUR), vol. 16(2):pp. 111–152, 1984.

[Kam00] A. Kaminsky. Jinime: Jinitm connection technology for mobile devices.
white paper, August 2000.

[Kle04] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-mache: toolkit
support for tangible input. In CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 399–406. ACM
Press, New York, NY, USA, 2004.

[Lam86] B. W. Lampson. Designing a global name service. In Proceedings of
the fifth annual ACM symposium on Principles of distributed computing
(PODC ’86), pp. 1–10. ACM Press, New York, NY, USA, 1986.



BIBLIOGRAPHY 129

[Leh86] T. J. Lehman and M. J. Carey. Query processing in main memory
database management systems. In SIGMOD ’86: Proceedings of the
1986 ACM SIGMOD international conference on Management of data,
pp. 239–250. ACM Press, New York, NY, USA, 1986.

[Luc98] D. Luckham. Rapide: A language and toolset for simulation of distri-
buted systems by partial ordering of events. In Y. Masunaga, T. Kata-
yama, and M. Tsukamoto, editors, Proceedings of Worldwide Compu-
ting and Its Applications, International Conference, WWCA ’98, Se-
cond International Conference, vol. 1368 of Lecture Notes in Computer
Science, pp. 88 – 96. Springer-Verlag, March 1998.

[Luc02] D. C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[Man96] S. Mann. Smart clothing: wearable multimedia computing and personal
imaging to restore the technological balance between people and their
environments. In MULTIMEDIA ’96: Proceedings of the fourth ACM
international conference on Multimedia, pp. 163–174. ACM Press, New
York, NY, USA, 1996.

[Mic00] Microsoft. Universal Plug and Play Architecture, V1.0, Jun 2000.

[Mic03a] Sun Microsystems. JavaSpaces Service Specification , version 2.0, June
2003.

[Mic03b] Sun Microsystems. The Jini Architecture Specification, version 2.0,
June 2003.

[Mic05] Sun Microsystems. Homepage at http://java.sun.com/javame/ refe-
rence/docs/index.html, 2005.

[Min90] S. L. Min and J.-L. Baer. A performance comparison of directory-
based and timestamp-based cache coherence schemes. In In Proceedings
of the International Conference on Parallel Processing, Volume I, pp.
305–311. CRC Press, 1990.

[Moc88] P. Mockapetris and K. J. Dunlap. Development of the domain name
system. In SIGCOMM ’88: Symposium proceedings on Communications
architectures and protocols, pp. 123–133. ACM Press, New York, NY,
USA, 1988.

[Mur04] R. Murch. Autonomic Computing. Prentice Hall, March 2004.

[Nee93] R. Needham. Names. In S. Mullender, editor, An Advanced Course In
Distributed Systems, pp. 315–326. ACM Press/Addison-Wesley Publis-
hing Co., Wokingham, England, 1993.



130 BIBLIOGRAPHY

[Not04] W. W. G. Note. Web services architecture. http://www.w3.org/TR/ws-
arch/, February 2004.

[Oki93] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus: an ar-
chitecture for extensible distributed systems. In SOSP ’93: Proceedings
of the fourteenth ACM symposium on Operating systems principles, pp.
58–68. ACM Press, New York, NY, USA, 1993.

[Pap98] G. A. Papadopoulos and F. Arbab. Coordination models and langua-
ges. In Advances in Computers, vol. 46, pp. 329–400. Academic Press,,
Orlando, Florida, USA, August 1998.

[Pea80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, vol. 27(2):pp. 228–234, 1980.

[Pet88] L. L. Peterson. The profile naming service. ACM Trans Comput Syst,
vol. 6(4):pp. 341–364, 1988.

[Pet96] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou: replicated
database services for world-wide applications. In EW 7: Proceedings of
the 7th workshop on ACM SIGOPS European workshop, pp. 275–280.
ACM Press, New York, NY, USA, 1996.

[Ric00] G. G. Richard. Service advertisement and discovery: enabling universal
device cooperation. In IEEE Internet Computing, vol. 4, pp. 18–26.
IEEE Computer Society Press, Los Alamitos, California, September-
October 2000.

[Row01] A. I. T. Rowstron and P. Druschel. Chord: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
(Middleware 2001), pp. 329–350, November 2001.

[Roy70] W. W. Royce. Managing the development of large software systems.
In Proceeding of IEEE WESCON, Reprinted in Proceedings of the 9th
International Conference on Software Engineering (1987, pp. 328–338.
IEEE Computer Society Press, Los Alamitos, California, Nov 1970.

[Ruy00] T. C. Ruys. Low-fat recipes for spin. In Proceedings of the 7th Inter-
national SPIN Workshop on SPIN Model Checking and Software Veri-
fication, pp. 287–321. Springer-Verlag, London, UK, 2000.

[Sah03] D. Saha and A. Mukherjee. Pervasive computing: A paradigm for the
21st century. vol. 36, pp. 25–31. IEEE Computer Society, Los Alamitos,
CA, USA, 2003.



BIBLIOGRAPHY 131

[Sat96] M. Satyanarayanan. Fundamental challenges in mobile computing. In
PODC ’96: Proceedings of the fifteenth annual ACM symposium on
Principles of distributed computing, pp. 1–7. ACM Press, New York,
NY, USA, 1996.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges. vol. 8,
pp. 10–17. IEEE Computer Society, Los Alamitos, CA, USA, August
2001.

[Sco02] J. Scott, F. Hoffmann, M. Addlesee, G. Mapp, and A. Hopper. Net-
worked surfaces: a new concept in mobile networking. Mob Netw Appl,
vol. 7(5):pp. 353–364, 2002.

[Sto03] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer loo-
kup protocol for internet applications. IEEE/ACM Transactions on
Networking (TON), vol. 11(1):pp. 17–32, 2003.

[Sun03] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H. Hartel. Service
discovery at home. In 4th Int. Conf. on Information, Communications
& Signal Processing and 4th IEEE Pacific-Rim Conf. On Multimedia
(ICICS/PCM), p. 1929. IEEE Computer Society Press, December 2003.

[Sun05] V. Sundramoorthy, C. Tan, P. H. Hartel, J. I. den Hartog, and J. Schol-
ten. Functional principles of registry-based service discovery. In 30th
Annual IEEE Conf. on Local Computer Networks (LCN), pp. 209–217.
IEEE Computer Society Press, Sydney, Australia, November 2005.

[Sun06a] V. Sundramoorthy and G. van de Glind. Frodo high-level and detailed
design specifications –version 1.0. Technical Report TR-CTIT-06-25,
Enschede, June 2006.

[Sun06b] V. Sundramoorthy, G. J. van de Glind, P. H. Hartel, and J. Scholten.
The performance of a second generation service discovery protocol in
response to message loss. In 1st Int. Conf. on Communication System
Software and Middleware, p. to appear. IEEE Computer Society Press,
New Delhi, India, Jan 2006.

[Sun06c] V. Sundramoorthy, P. H. Hartel, and J. Scholten. On consistency main-
tenance in service discovery. In 20th IEEE Int. Parallel & Distributed
Processing Symp. (IPDPS 2006), p. 10 in CDROM. IEEE Computer
Society Press, Los Alamitos, California, April 2006.

[Tan02a] A. Tanenbaum. Computer Networks. Prentice Hall Professional Tech-
nical Reference, 2002.

[Tan02b] A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002.



132 BIBLIOGRAPHY

[TEA04] TEAHA. Homepage at http://www.teaha.org, 2004.

[Ter94] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer,
and B. B. Welch. Session guarantees for weakly consistent replicated
data. In Proceedings of the Third International Conference on Par-
allel and Distributed Information Systems (PDIS), pp. 140–149. IEEE
Computer Society Press, Austin, Texas, September 1994.

[Van05] K. Vanthournout, G. Deconinck, and R. Belmans. A taxonomy for
resource discovery. Personal Ubiquitous Comput, vol. 9(2):pp. 81–89,
2005.

[Wan05] S. C. Wang, M. L. Chiang, K. Q. Yan, and K. F. Jea. Streets of con-
sensus under unknown unreliable network. SIGOPS Operating Systems
Review, vol. 39(4):pp. 80–96, 2005.

[Wei91] M. Weiser. The computer for the 21st century. In Scientific Ameri-
can, vol. 265, pp. 94–104. IEEE Computer Society Press, Los Alamitos,
California, September 1991.

[Wis05] R. Wishart, R. Robinson, J. Indulska, and A. Josang. Superstringrep:
Reputation-enhanced service discovery. In V. Estivill-Castro, editor,
28th Australasian Computer Science Conference (ACSC2005), vol. 38
of CRPIT, pp. 49–58. ACS, Newcastle, Australia, 2005.



Curriculum Vitae

Vasughi Sundramoorthy was born in Kuala Lumpur, Malaysia on May 7, 1977.
After finishing secondary school in 1997, she studied B. Eng in Computer and
Communications Systems Engineering in University Putra Malaysia. She gradua-
ted in 2000, and went on to work as a Software Development Engineer in Motorola
Malaysia Software Center. In April 2002, she became a PhD student (in Dutch:
Assistent in Opleiding or AIO) with the Faculty of Electrical Engineering, Ma-
thematics and Computer Science at the University of Twente. She was a member
of the At Home Anywhere project, under the supervision of ir. Hans Scholten and
Prof. dr. Pieter Hartel. She has deep interests in developing distributed systems
for pervasive computing, with emphasis on fault-tolerance.

At the time of this thesis publication, Vasughi is a Research Associate in the
Department of Computing at Lancaster University, UK.

133








